Waves Practice

1.) The period of a tuning fork is 0.136 s . What is its frequency?

$$
\text { Answer - } \quad f=\frac{1}{T} \quad f=\frac{1}{0.136} \quad f=7.35 \mathrm{~Hz}
$$

2a.) If a pendulum oscillates thirty-two times in two minutes, what is its frequency?

$$
\text { Answer - } \quad \frac{32}{2}=16 \text { per minute } \quad \frac{16}{60}=0.267 \mathrm{~Hz} \quad f=0.267 \mathrm{~Hz}
$$

b.) what is the period? Answer - $\quad T=\frac{1}{f} \quad f=\frac{1}{0.267} \quad \underline{=3.75 \mathrm{~s}}$
3.) The figure below shows a water wave.

a.) With arrows, show the direction of motion of a marker placeu a eucri letter.
b.) Which pair of points are in phase?
c.) Measure the wavelength in centimetres. Answer - A and E or B and F etc.
d.) Label a crest and a trough.
4.) A vibrating paddle in a ripple tank, vibrates with a frequency of 3 Hz and an amplitude of 2.5 cm . The resulting waves travel away from the source with the speed of $5.7 \frac{\mathrm{~m}}{\mathrm{~s}}$, passing under various markers for the water.
a.) At what frequency do the markers oscillate?

Answer - same as paddle. $\quad f=3 \mathrm{~Hz}$
b.) If the frequency of this source is changed to 4.5 Hz , what will happen to the speed of the waves and the frequency of the markers oscillation?

Answer - same as paddle. $\quad f=4.5 \mathrm{~Hz} \quad$ speed is unchanged as media didn'tchange.
5.) The wave created by a stone dropped into a pool of water decreases in amplitude as they radiate out from the source. Why?

Answer - energy in the wave is slowly converted into heat from friction between the medium particles. Less energy means less amplitude.
6.) A pond is 12 m across. The crest of two successive waves are 60.0 cm apart and they move across the pond in 15 s .
a.) What is the velocity of the waves?

$$
\text { Answer - } \quad \vec{v}=\frac{\Delta \vec{d}}{t} \quad \vec{v}=\frac{12}{15} \quad \vec{v}=+0.80 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b.) What is the frequency of the waves?

$$
\text { Answer - } \quad \vec{v}=\lambda f \quad 0.80=(0.60) f \quad f=1.3 \mathrm{~Hz}
$$

c.) What is the period of the waves?
Answer -

$$
f=\frac{1}{T}
$$

$$
1.3333=\frac{1}{0.136}
$$

$$
\underline{T=0.77 \mathrm{~s}}
$$

7.) A swing has a frequency of 0.20 Hz . Its amplitude is of 1.2 m . What is the total distance travelled in one minute?

Answer - 0.2 Hz means 0.2 pulses per second. Therefore there is 1 pulse in 5 seconds, and ultimately 12 swings in 1 minute.

- each swing is 2.4 m in total distance so 28.8 m is the total distance.
8.) The period of some ocean waves is 2.7 s .
a.) How many wave crests will hit the boat in 2.5 min .

$$
\text { Answer - } \quad \frac{150}{2.7}=55.5 \text { hits }
$$

b.) If these waves travel at a speed of $1.3 \frac{\mathrm{~m}}{\mathrm{~s}}$, what is their wavelength?

$$
\begin{array}{llll}
\text { Answer - } & \vec{v}=\frac{\lambda}{T} & 1.3=\frac{\lambda}{2.7} & \lambda=3.51 \mathrm{~m}
\end{array}
$$

c.) If the waves slowdown to $0.90 \frac{\mathrm{~m}}{\mathrm{~s}}$ near the shore,
i.) What is their wavelength?
Answer -
$\vec{v}=\frac{\lambda}{T}$
$0.90=\frac{\lambda}{2.7}$
$\lambda=2.43 \mathrm{~m}$
ii.) By how much has their frequency changed?

$$
\text { Answer - } \quad f=\frac{1}{T} \quad f=\frac{1}{2.7} \quad f=0.37 \mathrm{~s}
$$

iii.) How many wave crests will hit the shore in 2.5 min?

$$
\text { Answer - } \vec{v}=\lambda f \quad \vec{v}=(2.43)(0.37) \quad \vec{v}=0.90 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

9.) The figure below shows straight incident waves approaching a barrier.

a.) With a protractor, measure the angle of incidence and record? Answer - $\underline{58^{\circ}}$
b.) Draw in the reflected waves, showing that each reflected wav joins up with the corresponding incident wave at the barrier, and record the angle of reflection.

Answer - $\quad \underline{58^{\circ}}$

