Velocity Vector and Projectile Review

- 1.) A boat travels across a 15.0 m wide river, the river flows at $3.0 \frac{m}{s} east$, and the boat motor can create a velocity of $4.5 \frac{m}{s}$. If the boat aims north:
 - a.) What is its resultant as viewed from the shore?
 - b.) How long does it take the boat to reach the other bank?
 - c.) How far is the boat downstream when it reaches the other bank?
 - d.) At what angle should the boat aim to travel straight across the river?
- 2.) A cliff jumper leaps horizontally off a 32 m high cliff with a velocity of $1.2 \frac{m}{s}$, find:
 - a.) the distance from the base where the jumper hits the water.
 - b.) the final horizontal velocity just before impact.
 - c.) the final vertical velocity just before impact.
 - d.) the final velocity just before impact.

3.) A football is kicked 48.0 m, if it started with a velocity of $6.40 \frac{m}{s}$ and an angle of 40° , what is:

a.) the total 'air time' of the ball?

b.) the range and maximum height of the ball?

c.) the velocity at the maximum height?

4.) A horseshoe thrower must toss at a cat which is 10.0 m away. If the throw is at 45° , and lands right on the cat, what was its initial velocity?

5.) A cat leaps horizontally at $3.0 \frac{m}{s}$ off a 10.0 m high balcony, what is its velocity after 0.50 s?

6.) Sketch the $\vec{d}_x vs.t$ and $\vec{d}_y vs.t$ graphs of a <u>type 1</u> projectile.

Answers-1.)
$$5.4 \frac{m}{s}$$
 @ $34^{\circ} E \ of \ N$, $3.33 \ s$, $10.0 \ m$, $42^{\circ} W \ of \ N$ 2.) $\vec{d}_x = 3.07 \ m$, $\vec{v}_{xf} = 1.2 \frac{m}{s}$, $\vec{v}_{yf} = -25 \frac{m}{s}$, $25.1 \frac{m}{s} \ at \ 3^{\circ} E \ of \ S$ 3.) $t = 0.840 \ s$, $\vec{d}_x = 4.11 \ m$, $\vec{d}_y = 0.861 \ m$, $4.90 \frac{m}{s} \ horizontal$ 4.) $9.9 \frac{m}{s}$ 5.) $14.3 \frac{m}{s} \ at \ 12.1^{\circ} \ above \ vertical$

2