More Vector Review

1.) Add the following vectors:
a.) $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $40^{\circ} \mathrm{S}$ of E and $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $30^{\circ} \mathrm{N}$ of E
b.) 15 N at $30^{\circ} \mathrm{W}$ of N and 24 N at $12^{\circ} \mathrm{E}$ of S .
2.) A boat crosses a 100 m wide river flowing East at $5.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. If the boat is aimed due north and its motor can achieve a speed of $8.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still water, determine the velocity as viewed from shore, and distance downstream the boat is when it reaches the other bank.
3.) A plane is seen from the ground to be traveling at $120 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $30^{\circ} \mathrm{N}$ of E . If the wind is measured to be $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $70^{\circ} \mathrm{E}$ of S then find the aircraft's heading and speed in the air.
4.) A change in any vector is a vector subtraction. If a car is seen traveling north at $10 \frac{\mathrm{~m}}{\mathrm{~s}}$ and later viewed going east at $12 \frac{\mathrm{~m}}{\mathrm{~s}}$ what was the change in its velocity?
3.) $103 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $47^{\circ} \mathrm{E}$ of N
4.) $15.62 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $40^{\circ} \mathrm{S}$ of E

