Stoichiometry

Name - \qquad
1.) In the reaction ___ $\mathrm{C}_{2} \mathrm{H}_{6}+\ldots _\mathrm{O}_{2} \rightarrow$ - $-\mathrm{CO}_{2}+$ _ $\underline{6} \mathrm{H}_{2} \mathrm{O}$
a.) How many oxygen molecules react with 6 molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$?

Answer - $\quad 6$ molec $C_{2} H_{6} \times \frac{7 \text { molec } O_{2}}{2 \text { molec } C_{2} H_{6}}=21$ molec O_{2}
b.) How many $\mathrm{H}_{2} \mathrm{O}$ molecules are produced when 12 molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$ react?

$$
\text { Answer - } \quad 12 \text { molec } \mathrm{C}_{2} \mathrm{H}_{6} \times \frac{6 \text { molec } \mathrm{H}_{2} \mathrm{O}}{2 \text { molec } \mathrm{C}_{2} \mathrm{H}_{6}}=36 \text { molec } \mathrm{H}_{2} \mathrm{O}
$$

c.) How many moles of oxygen molecules are needed to produce 18 moles of CO_{2} ?

Answer - $\quad 18 \mathrm{~mol} \mathrm{CO} 2 \times \frac{7 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{Co}_{2}}=31.5=32 \mathrm{~mol} \mathrm{O}_{2}$
d.) How many moles of CO_{2} are produced when 13 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are used up?

Answer - $\quad 13 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \times \frac{4 \mathrm{~mol} \mathrm{Co}_{2}}{2 \text { mol C }_{2} \mathrm{H}_{6}}=26 \mathrm{~mol} \mathrm{CO}_{2}$
2.) In the reaction __
a.) How many molecules of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced when 12 atoms of Fe react?

$$
\text { Answer - } \quad 12 \text { atoms } \mathrm{Fe} \times \frac{1 \text { molec } \mathrm{Fe}_{3} \mathrm{O}_{4}}{3 \text { atoms } \mathrm{Fe}}=4 \text { molec } \mathrm{Fe}_{3} \mathrm{O}_{4}
$$

b.) How many moles of Fe are required to produce 16 moles of H_{2} ?

Answer - $\quad 16 \mathrm{~mol} \mathrm{H}_{2} \times \frac{3 \mathrm{~mol} \mathrm{Fe}}{4 \mathrm{~mol} \mathrm{H}_{2}}=12 \mathrm{~mol} \mathrm{Fe}$
c.) How many H_{2} molecules are made when 40 molecules of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced?

Answer - $\quad 40$ molec $\mathrm{Fe}_{3} \mathrm{O}_{4} \times \frac{4 \text { molec } \mathrm{H}_{2}}{1 \text { atoms } \mathrm{Fe}_{3} \mathrm{O}_{4}}=160 \mathrm{molec} \mathrm{H}_{2}$
d.) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are required to react with 14.5 moles of Fe ?

Answer - $\quad 14.5 \mathrm{~mol} \mathrm{Fe} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{~mol} \mathrm{Fe}}=19.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
3.) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 9.6 moles of $\mathrm{O}_{2}(\mathrm{~g})$ react according to the equation

$$
__\mathrm{H}_{2(\mathrm{~g})}+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad _ \text {_ } \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Answer -

$$
9.6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=19.2 \mathrm{~mol}=19 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

a.) How many moles of $\mathrm{I}_{4} \mathrm{~F}_{2(\mathrm{~g})}$ are produced by 5.40 moles of $\mathrm{F}_{2(\mathrm{~g})}$?

$$
\text { Answer - } \quad 5.40 \mathrm{~mol} \mathrm{~F}_{2} \times \frac{1 \mathrm{~mol} \mathrm{I}_{4} F_{2}}{6 \mathrm{~mol} \mathrm{~F}_{2}}=0.900 \mathrm{~mol} \mathrm{I}_{4} F_{2}
$$

b.) How many moles of $\mathrm{F}_{2(\mathrm{~g})}$ are required to produce 4.50 moles of $\mathrm{IF}_{5 \mathrm{~g})}$?

$$
\text { Answer - } \quad 4.50 \mathrm{~mol} \mathrm{IF} F_{5} \times \frac{6 \mathrm{~mol} F_{2}}{2 \mathrm{~mol} \mathrm{IF}_{5}}=13.5 \mathrm{~mol} F_{2}
$$

c.) How many moles of $I_{2(\mathrm{~g})}$ are required to react with 7.60 moles of $\mathrm{F}_{2(\mathrm{~g})}$?

$$
\text { Answer - } \quad 7.60 \mathrm{~mol} \mathrm{~F}_{2} \times \frac{3 \mathrm{~mol} \mathrm{I}_{2}}{6 \mathrm{~mol} \mathrm{~F}_{2}}=3.80 \mathrm{~mol} \mathrm{I} I_{2}
$$

5.) A student decomposes some hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, according to the following reaction

$$
\xrightarrow[_]{2} \mathrm{H}_{2} \mathrm{O}_{2} \quad \rightarrow \quad _ \text {__ } \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{O}_{2}
$$

If a total of 0.125 moles of reactants and products are involved in the reaction, how many moles of O_{2} are produced?

Answer - $\quad 0.125 \mathrm{~mol} \mathrm{all} \times \frac{1 \mathrm{~mol} \mathrm{o}}{5 \mathrm{~mol} \mathrm{all}}=0.025 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$

