Stoichiometry

Name - \qquad
1.) In the reaction $\mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
a.) How many oxygen molecules react with 6 molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$?
b.) How many $\mathrm{H}_{2} \mathrm{O}$ molecules are produced when 12 molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$ react?
c.) How many moles of oxygen molecules are needed to produce 18 moles of CO_{2} ?
d.) How many moles of CO_{2} are produced when 13 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are used up?
2.) In the reaction \qquad $\mathrm{Fe}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$ \rightarrow \qquad $\mathrm{Fe}_{3} \mathrm{O}_{4}+$ \qquad H_{2}
a.) How many molecules of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced when 12 atoms of Fe react?
b.) How many moles of Fe are required to produce 16 moles of H_{2} ?
c.) How many H_{2} molecules are made when 40 molecules of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced?
d.) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are required to react with 14.5 moles of Fe ?
3.) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 9.6 moles of $\mathrm{O}_{2(\mathrm{~g})}$ react according to the equation

$$
\ldots \mathrm{H}_{2(\mathrm{~g})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow-\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

4.) Consider the equation __ $I_{2(\mathrm{~g})}+\ldots \mathrm{F}_{2(\mathrm{~g})} \rightarrow \mathrm{IF}_{5(\mathrm{~g})}+\ldots \mathrm{I}_{4} \mathrm{~F}_{2(\mathrm{~g})}$
a.) How many moles of $I_{4} F_{2(\mathrm{~g})}$ are produced by 5.40 moles of $\mathrm{F}_{2(\mathrm{~g})}$?
b.) How many moles of $\mathrm{F}_{2(\mathrm{~g})}$ are required to produce 4.50 moles of $\mathrm{IF}_{5(\mathrm{~g})}$?
c.) How many moles of $I_{2(\mathrm{~g})}$ are required to react with 7.60 moles of $\mathrm{F}_{2 \text { (g) }}$?
5.) A student decomposes some hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, according to the following reaction
\qquad
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ $\mathrm{H}_{2} \mathrm{O}+$ O_{2}

If a total of 0.125 moles of reactants and products are involved in the reaction, how many moles of O_{2} are produced?

"What the? ... This is lemonade! Where's my culture of amoebic dysentery?"

