Stoichiometry Review

Name - \qquad
1.) Solve for the number of grams of oxygen needed to burn 1.06 moles of methane, CH_{4}, to produce carbon dioxide and water. $\quad \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\text { Answer - } \quad 1.06 \mathrm{~mol} \mathrm{CH}_{4} \times \frac{2 \mathrm{~mol} \mathrm{o}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}} \times \frac{32.00 \mathrm{~g} \mathrm{o}}{1 \mathrm{~mol} \mathrm{O}_{2}}=67.8 \mathrm{~g} \mathrm{O}_{2}
$$

2.) A camping Lantern uses the reaction of calcium carbide, CaC_{2}, and water to produce acetylene gas, $\mathrm{C}_{2} \mathrm{H}_{2}$, and calcium hydroxide. How many grams of water are required to produce 1.55 moles of acetylene gas? $\quad \mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$

$$
\text { Answer - } \quad 1.55 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \text { mol C }_{2} \mathrm{H}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=55.862 \mathrm{~g} \quad 55.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

3.) When 7.52 g of lead (II) carbonate are reacted with 27.5 ml of 3.00 M nitric acid, what mass of lead (II) nitrate will be formed? $\quad \mathrm{PbCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}$

$$
\text { Answer - } \quad 0.0275 \mathrm{LHNO}_{3} \times \frac{3.00 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{LHNO}_{3}} \times \frac{1 \mathrm{~mol}^{2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}}{2 \mathrm{~mol} \mathrm{HNO}_{3}} \times \frac{331.2 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1{\mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}_{2}}=13.662 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}
$$

$9.32 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \underline{\text { Limiting } \rightarrow \quad 7.52 \mathrm{~g} \mathrm{PbCO}} \times \frac{1 \mathrm{~mol} \mathrm{PbCO}_{3}}{267.2 \mathrm{~g} \mathrm{PbCO}} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~mol}_{2} \mathrm{PbCO}} \times \frac{331.4 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1 \text { mol } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=9.321 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$

4a.) For the reaction of zinc metal and hydrochloric acid, how many moles of hydrochloric acid are needed to completely react with 12.35 g of zinc? $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

$$
\text { Answer - } \quad 12.35 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Zn}}=0.3777 \mathrm{~mol} \mathrm{HCl}
$$

b.) What volume of 3.00 M hydrochloric acid is required to react with 12.35 g of zinc?

$$
\text { Answer - } \quad 12.35 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Zn}} \times \frac{1 \mathrm{~L} \mathrm{HCl}}{3.00 \mathrm{~mol} \mathrm{HCl}}=0.126 \mathrm{~L} \mathrm{HCl}
$$

c.) How many moles of hydrogen are produced when 12.35 g of zinc are reacted with the correct amount of hydrochloric acid? Answer - $\quad 12.35 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Zn}}=0.1889 \mathrm{~mol} \mathrm{H}_{2}$

5a.) If 10.45 g of aluminium is reacted with 66.55 g of copper (II) sulphate, which reactant is in excess?

$$
\begin{array}{cl}
2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu} \\
\text { Answer - } \quad & 10.45 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{al}}{26.98 \mathrm{~g} \mathrm{gl}} \times \frac{3 \mathrm{~mol} \mathrm{Cu}}{2 \mathrm{~mol} \mathrm{Al}} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=36.9217 \mathrm{~g} \mathrm{Cu}
\end{array}
$$

$$
\underline{\text { Al Excess }} \rightarrow \quad 66.55 \mathrm{~g} \mathrm{CuSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.61 \mathrm{~g} \mathrm{CuSO}_{4}} \times \frac{3 \mathrm{~mol} \mathrm{Cu}_{3}^{3 \text { mol cusO}_{4}} \times \frac{63.55 \mathrm{~g} \mathrm{cu}}{1 \mathrm{~mol} \mathrm{cu}^{2}}=26.4974 \mathrm{~g} \mathrm{Cu}}{}
$$

b.) Calculate the mass of the excess reactant.

$$
10.45 g-7.4996 g=2.9503 g
$$

$$
2.95 \mathrm{~g} \mathrm{Al}
$$

c.) Calculate the mass of each product.

$$
\text { Answer }-\mathrm{Cu}=26.4908 \mathrm{~g}
$$

After many years of marital bliss, tension enters the Kent household.

$$
66.55 \mathrm{~g} \mathrm{CuSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.65 \mathrm{~g} \mathrm{CuSO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{SO}_{4}}{3 \mathrm{~mol} \mathrm{CuSO}_{4}} \times \frac{342.14 \mathrm{~g} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{SO}_{4}}=47.54 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

6.) If 111.7 g of iron (II) and 212.7 g of chlorine gas completely react, how many grams of product are formed? $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{2}$

Answer - $\quad 111.7 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}} \times \frac{1 \mathrm{~mol} \mathrm{FeCl} l_{2}}{1 \mathrm{~mol} \mathrm{Fe}^{2}} \times \frac{126.75 \mathrm{~g} \mathrm{FeCl}}{1} \mathbf{1 \mathrm { mol } \mathrm { FeCl } _ { 2 }}=253.5 \mathrm{~g} \mathrm{FeCl} l_{2}$
$212.7 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.90 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{2}}{1 \text { mol Cl }_{2}} \times \frac{126.75 \mathrm{~g} \mathrm{FeCl}}{1 \text { mol }_{2} \mathrm{FeCl}_{2}}=380.3 \mathrm{~g} \mathrm{FeCl}_{2}$
7.) If you mix 15.50 g of lead (II) nitrate and 3.81 g of sodium chloride, what mass of each product is produced? $\quad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{PbCl}_{2}$

$$
\begin{aligned}
& \text { Answer - } \quad 15.50 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{331.2 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaNO}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{85.00 \mathrm{~g} \mathrm{NaNO}}{1 \mathrm{~mol} \mathrm{NaNO}_{3}}=7.995 \mathrm{~g} \mathrm{NaNO} \\
& \text { Limiting } \rightarrow \quad 3.81 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{2 \mathrm{~mol} \mathrm{NaNO}}{2 \mathrm{~mol} \mathrm{NaCl}} \times \frac{85.00 \mathrm{~g} \mathrm{NaNO}}{1 \mathrm{~mol} \mathrm{NaNO}_{3}}=5.542 \mathrm{~g} \mathrm{NaNO} \quad 5.54 \mathrm{~g} \mathrm{NaNO}_{3} \\
& 3.81 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{1 \mathrm{~mol} \mathrm{PbCl}_{2}}{2 \mathrm{~mol} \mathrm{NaCl}} \times \frac{85.00 \mathrm{~g} \mathrm{PbCl}_{2}}{1 \mathrm{~mol} \mathrm{PbCl}_{2}}=9.065 \mathrm{~g} \mathrm{PbCl}_{2} \quad 9.07 \mathrm{~g} \mathrm{PbCl}_{2}
\end{aligned}
$$

8.) 2.0 L of $0.60 \mathrm{M} \mathrm{FeCl}_{3}$ solution are mixed with 1.0 L of $0.90 \mathrm{M} \mathrm{BaCl}_{2}$ solution. No reaction occurs. What is the concentration of each compound in the final solution?

$$
\begin{array}{lll}
\mathrm{FeCl}_{3} \rightarrow C_{d i l}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} & C_{\text {dil }}=\frac{(0.60)(2.0)}{(2.0+1.0)} & C_{\text {dil }}=0.40 \mathrm{M} \mathrm{FeCl}_{3} \\
\mathrm{BaCl}_{2} \rightarrow C_{\text {dil }}=\frac{C_{c o n c} \times V_{c o n c}}{V_{\text {dil }}} & C_{\text {dil }}=\frac{(0.90)(1.0)}{(2.0+1.0)} & C_{\text {dil }}=0.30 \mathrm{M} \mathrm{BaCl}_{2}
\end{array}
$$

