More Dilution Calculations

Name - \qquad
Molarity $=\frac{\text { moles of solute }}{\text { litre of solution }}$
$[$ final $]=\frac{[\text { initial }] \times(\text { initial volume })}{(\text { final volume })}$
1.) How many litres of a $0.250 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution contain 26.3 grams of $\mathrm{K}_{2} \mathrm{CrO}_{4}$?
2.) How many grams of sodium sulphate are there in 0.27 L of a 1.13 M solution?
3.) 1.00 L of solution contains 0.200 moles of $\mathrm{NaF}_{(s)}$ and 0.300 moles of $\mathrm{MgF}_{2(\mathrm{~s})}$. Find;
$\left[\mathrm{Mg}^{2+}\right]=$ \qquad
$\left[\mathrm{Na}^{+}\right]=$ \qquad
[$\left.\mathrm{F}^{-}\right]=$ \qquad
4.) What would be the molarity of a solution in which 50.0 litres of $\mathrm{HCl}_{(a q)}$ measured at $S T P$, is dissolved in $2.00 L$ of water? (assume no change in volume of the water when the gas is added).
5.) To what volume must 100 . mL of $6.00 \mathrm{M} \mathrm{HCl}_{(a q)}$ be diluted in order that the resulting solution be 1.00 M ?
6.) How many molecules of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, would there be in 1.00 mL of a 1.00 M solution?
7.) How many grams of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (s) would be required to prepare 1.00 L of $2.00 \mathrm{M} \mathrm{CuSO}_{4}$?
8.) 2.00 L of $12.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ is diluted to 20.0 L . What is the molarity of the diluted solution?

