Stoichiometry - Moles, Mass, Molecules and Volume

Name - \qquad
1.) \qquad $\mathrm{NH}_{3}{ }_{(\mathrm{g})}{ }^{+}$ \qquad $\mathrm{O}_{2(\mathrm{~g})} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}{ }^{+}$ \qquad $\mathrm{NO}{ }_{(\mathrm{g})}$
a.) What mass of $\mathrm{NO}_{(\mathrm{g})}$ is produced when 2.00 mol of NH_{3} (g) are reacted with excess O_{2} (g)?
b.) What mass of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is produced when 4.00 mol of O_{2} (g) are reacted with excess NH_{3} (g) ?
c.) What volume of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP is required to react with 3.00 mol of O_{2} ?
d.) What volume of $\mathrm{NH}_{3}{ }_{(\mathrm{g})}$ at STP is required to react with 0.750 mol of $\mathrm{H}_{2} \mathrm{O}$ (g) ?
2.) $\quad C_{5} \mathrm{H}_{12(\mathrm{I})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow-\mathrm{CO}_{2(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a.) What mass of $\mathrm{CO}_{2(\mathrm{~g})}$ is produced when 100.0 g of $\mathrm{C}_{5} \mathrm{H}_{12}$ (I) is burned?
b.) What mass of O_{2} is required to produce 60.0 g of $\mathrm{H}_{2} \mathrm{O}$ (I)?
c.) What mass of $\mathrm{C}_{5} \mathrm{H}_{12}$ (I) is required to produce 90.0 L of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP?
d.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is required to produce 70.0 g of $\mathrm{CO}_{2(\mathrm{~g})}$?
e.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is required to produce 48.0 L of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP?
f.) What mass of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$ is made when the burning of $\mathrm{C}_{5} \mathrm{H}_{12}$ gives 106 L of CO_{2} (g) at STP?
3.) Tetraethyl lead, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$, is an "antiknock" ingredient which was added to some gasoline. Tetraethyl lead burns according to this equation

$$
2 \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(\mathrm{l})}+27 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{PbO}_{(\mathrm{s})}+16 \mathrm{CO}_{2(\mathrm{~g})}+20 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is consumed when 100.0 g of PbO (s) are formed?
b.) How many molecules of CO_{2} are formed when $1.00 \times 10^{-6} \mathrm{~g}$ of tetraethyl lead are burned?
c.) How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are formed when 135 molecules of O_{2} react?
d.) What volume of $\mathrm{O}_{2}{ }_{(g)}$ at STP , in mL , is required to react with 1.00×10^{15} molecules of tetraethyl lead?
4.) Nitromethane, a dragster fuel, burns according to the following reaction

$$
\ldots \mathrm{CH}_{3} \mathrm{NO}_{2}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\ldots \mathrm{N}_{2}(\mathrm{~g})
$$

a.) What mass of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is produced when 0.150 g of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (I) is burned?
b.) What combined volume of gas at STP is produced if 0.316 g of $\mathrm{CH}_{3} \mathrm{NO}_{2}(1)$ is burned?
c.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is required to produce 0.250 g of $\mathrm{CO}_{2(\mathrm{~g})}$?
d.) What mass of $\mathrm{H}_{2} \mathrm{O}_{(1)}$ is produced when 0.410 g of CO_{2} is produced?
5.) A sample of high purity silicon is prepared by strongly heating of hydrogen and silicon tetrachloride in a sealed tube: \qquad $\mathrm{SiCl}_{4(\mathrm{~g})}+$ \qquad $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ \qquad Si ${ }_{(s)}+$ \qquad $\mathrm{HCl}_{(\mathrm{g})}$

If exactly 1.00 g of silicon is required, what mass of each of $\mathrm{SiCl}_{4(\mathrm{~g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$ must react?
6.) Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, is a rocket fuel which is prepared according to the reaction

$$
\ldots \mathrm{NH}_{3}\left(\mathrm{aq)}+\ldots \ldots \mathrm{NaOCl}_{(\mathrm{aq})} \rightarrow \ldots \mathrm{N}_{2} \mathrm{H}_{4(\mathrm{aq})}+\ldots \mathrm{NaCl}_{(\mathrm{aq})}+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.
$$

NaOCl is common "bleach" and $\mathrm{NH}_{3}{ }_{(\mathrm{aq})}$ is prepared by passing NH_{3} (g) into water. If $1.25 \times 10^{4} \mathrm{~kg}$ of hydrazine is required, how many litres of ammonia gas, at STP, is required in the reaction?
7.) One of the most efficient drying agents known as $\mathrm{P}_{4} \mathrm{O}_{10}$ will even remove water from pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce SO_{3} in the manner shown. $\quad \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}\left(\mathrm{qq)}+6 \mathrm{SO}_{3}(\mathrm{~g})\right.$ Pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ (I) has a density of $1.84 \frac{\mathrm{~g}}{\mathrm{~mL}}$. If 25.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) react, what mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ also reacts and what volume of $\mathrm{SO}_{3}{ }_{(\mathrm{g})}$ at STP is produced?
8.) Ozone, O_{3}, in the upper atmosphere protects the earth from the sun's harmful ultraviolet radiation. One step in the destruction of the ozone layer by chlorine-containing compounds is

$$
\ldots \mathrm{Cl}_{(\mathrm{g})}+\ldots \mathrm{O}_{3(\mathrm{~g})} \rightarrow \ldots \mathrm{ClO}_{(\mathrm{g})}+\ldots \mathrm{O}_{2(\mathrm{~g})}
$$

The volume of the ozone is estimated to be $1.5 \times 10^{15} \mathrm{~L}$ at STP. Each Chlorine atom is continually "recycled" so as to be capable of destroying an average of about 1.0×10^{5} molecules of ozone. What mass of chlorine atoms would be required to destroy the available ozone if no repair occurred?
9.) What is the molar mass of Q if 0.150 mol of R_{4} and 143.8 g of Q_{2} react completely to yield $R Q_{3}$ as the only product?
10.) Mercury (II) oxide decomposes when heated. \qquad $\mathrm{HgO}_{(\mathrm{s})} \quad \rightarrow$ \qquad $\mathrm{Hg}_{(1)}+$ \qquad O_{2} (g)

What mass of HgO decomposes to yield one-third as many atoms as there are in 100.0 g of neon gas?
11.) When 7.682 g of $\mathrm{XZO}_{3(\mathrm{~s})}$ is heated, 2.208 g of $\mathrm{O}_{2(\mathrm{~g})}$ and 5.474 g of $\mathrm{XZ}(\mathrm{s})$ are formed. When $X Z$ is mixed with $\mathrm{AgNO}_{3}($ (aq), all the XZ reacts to form 8.639 g of $\mathrm{AgZ}(\mathrm{s})$. Find the molar masses of X and Z .

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

