Name - _____

1.)
$$__NH_{3 (g)} + __O_{2 (g)} \rightarrow __H_2O_{(g)} + __NO_{(g)}$$

a.) What mass of NO $_{(g)}$ is produced when 2.00 mol of NH_{3 (g)} are reacted with excess $O_{2 (g)}$?
b.) What mass of H₂O $_{(g)}$ is produced when 4.00 mol of $O_{2 (g)}$ are reacted with excess NH_{3 (g)}?
c.) What volume of NH_{3 (g)} at STP is required to react with 3.00 mol of O_2 ?

d.) What volume of NH_{3 (g)} at STP is required to react with 0.750 mol of H₂O (g)?

2.) $C_5H_{12 (l)} + \dots O_{2 (g)} \rightarrow \dots CO_{2 (g)} + \dots H_2O_{(g)}$

a.) What mass of CO_{2 (g)} is produced when 100.0 g of C_5H_{12} (l) is burned?

- b.) What mass of O_2 is required to produce 60.0 g of H₂O (1)?
- c.) What mass of $C_5H_{12 (I)}$ is required to produce 90.0 L of $CO_{2 (g)}$ at STP?
- d.) What volume of $O_{2 (g)}$ at STP is required to produce 70.0 g of $CO_{2 (g)}$?

e.) What volume of $O_{2 (g)}$ at STP is required to produce 48.0 L of $CO_{2 (g)}$ at STP?

f.) What mass of H₂O (1) is made when the burning of C_5H_{12} gives 106 L of CO_{2 (9)} at STP?

3.) Tetraethyl lead, Pb(C₂H₅)₄, is an "antiknock" ingredient which was added to some gasoline. Tetraethyl lead burns according to this equation

$$2 Pb(C_2H_5)_{4 (l)} + 27 O_{2 (g)} \rightarrow 2 PbO_{(s)} + 16 CO_{2 (g)} + 20 H_2O_{(g)}$$

a.) What volume of $O_{2 (g)}$ at STP is consumed when 100.0 g of PbO $_{(s)}$ are formed?

- b.) How many molecules of CO_2 are formed when $1.00 \times 10^{-6} g$ of tetraethyl lead are burned?
- c.) How many molecules of H_2O are formed when 135 molecules of O_2 react?
- d.) What volume of $O_{2 (g)}$ at STP, in mL, is required to react with 1.00×10^{15} molecules of tetraethyl lead?
- 4.) Nitromethane, a dragster fuel, burns according to the following reaction

 $\underline{\qquad} CH_3NO_2 {}_{(l)} + \underline{\qquad} O_2 {}_{(g)} \rightarrow \underline{\qquad} CO_2 {}_{(g)} + \underline{\qquad} H_2O {}_{(g)} + \underline{\qquad} N_2 {}_{(g)}$

- a.) What mass of H₂O $_{(g)}$ is produced when 0.150~g of CH₃NO_{2 (I)} is burned?</sub>
- b.) What combined volume of gas at STP is produced if 0.316 g of CH₃NO_{2 (1)} is burned?
- c.) What volume of O_{2} (g) at STP is required to produce 0.250 g of CO_{2} (g)?
- d.) What mass of $H_2O_{(1)}$ is produced when 0.410 g of CO_2 is produced?

5.) A sample of high purity silicon is prepared by strongly heating of hydrogen and silicon tetrachloride in a sealed tube: _____SiCl_{4 (g)} + ____ H_{2 (g)} \rightarrow _____Si (s) + ____ HCl (g)

If exactly 1.00 g of silicon is required, what mass of each of SiCl_{4 (q)} and H_{2 (q)} must react?

6.) Hydrazine, N₂H₄, is a rocket fuel which is prepared according to the reaction

 $\underline{\qquad NH_{3 (aq)} + \underline{\qquad NaOCI_{(aq)} \rightarrow \qquad N_{2}H_{4 (aq)} + \underline{\qquad NaCI_{(aq)} + \underline{\qquad H_{2}O_{(l)}}}$

NaOCl is common "bleach" and NH_{3 (aq)} is prepared by passing NH_{3 (g)} into water. If $1.25 \times 10^4 kg$ of hydrazine is required, how many litres of ammonia gas, at STP, is required in the reaction?

7.) One of the most efficient drying agents known as P_4O_{10} will even remove water from pure H_2SO_4 to produce SO_3 in the manner shown. $P_4O_{10 (s)} + 6 H_2SO_{4 (l)} \rightarrow 4 H_3PO_{4 (aq)} + 6 SO_{3 (g)}$ Pure $H_2SO_{4 (l)}$ has a density of $1.84 \frac{g}{mL}$. If 25.0 mL of $H_2SO_{4 (l)}$ react, what mass of P_4O_{10} also reacts and what volume of $SO_{3 (q)}$ at STP is produced?

8.) Ozone, O₃, in the upper atmosphere protects the earth from the sun's harmful ultraviolet radiation.
One step in the destruction of the ozone layer by chlorine-containing compounds is

 $\underline{\qquad } Cl_{(g)} + \underline{\qquad } O_{3(g)} \rightarrow \underline{\qquad } ClO_{(g)} + \underline{\qquad } O_{2(g)}$

The volume of the ozone is estimated to be $1.5 \times 10^{15} L$ at STP. Each Chlorine atom is continually "recycled" so as to be capable of destroying an average of about 1.0×10^5 molecules of ozone. What mass of chlorine atoms would be required to destroy the available ozone if no repair occurred? 9.) What is the molar mass of Q if 0.150 mol of R₄ and 143.8 g of Q₂ react completely to yield RQ₃ as the only product?

10.) Mercury (II) oxide decomposes when heated. ____ HgO $_{(s)} \rightarrow ____ Hg _{(l)} + ____ O_{2 (g)}$

What mass of HgO decomposes to yield one-third as many atoms as there are in 100.0 g of neon gas?

11.) When 7.682 g of XZO_{3 (s)} is heated, 2.208 g of $O_{2 (g)}$ and 5.474 g of XZ (s) are formed. When XZ is mixed with AgNO_{3 (aq)}, all the XZ reacts to form 8.639 g of AgZ (s). Find the molar masses of X and Z.

"It's time we face reality, my friends. ... We're not exactly rocket scientists."