Stoichiometry - Moles, Mass, Molecules and Volume

Name - \qquad
1.) _4_ $\mathrm{NH}_{3}(\mathrm{~g})+\ldots 5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow$ _6_ $\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{g})}+\ldots 4 _\mathrm{NO}(\mathrm{g})$
a.) What mass of $\mathrm{NO}{ }_{(\mathrm{g})}$ is produced when 2.00 mol of $\mathrm{NH}_{3}{ }_{(\mathrm{g})}$ are reacted with excess $\mathrm{O}_{2}(\mathrm{~g})$?

Answer - $\quad 2.00 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{4 \mathrm{~mol} \mathrm{No}}{4 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{30.01 \mathrm{~g} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{NO}}=60.0 \mathrm{~g} \mathrm{NO}$
b.) What mass of $\mathrm{H}_{2} \mathrm{O}$ (g) is produced when 4.00 mol of $\mathrm{O}_{2}(\mathrm{~g})$ are reacted with excess $\mathrm{NH}_{3}(\mathrm{~g})$?

Answer - $\quad 4.00 \mathrm{~mol} \mathrm{O}_{2} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=86.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
c.) What volume of $\mathrm{NH}_{3}{ }_{(\mathrm{g})}$ at STP is required to react with 3.00 mol of O_{2} ?

Answer - $\quad 3.00 \mathrm{~mol} \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{22.41 \mathrm{~L} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=53.8 \mathrm{~L} \mathrm{NH}_{3}$
d.) What volume of $\mathrm{NH}_{3}(\mathrm{~g})$ at STP is required to react with 0.750 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?

Answer - $\quad 0.750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{4 \text { mol } \mathrm{NH}_{3}}{6{\text { mol } \mathrm{H}_{2} \mathrm{O}}^{222.41 \mathrm{LNH}_{3}}} 1$ mol NH$_{3} \quad=11.2 \mathrm{~L} \mathrm{NH}_{3}$
2.) \qquad $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+\ldots$ - $\mathrm{O}_{2(\mathrm{~g})} \rightarrow$ _- $\mathrm{CO}_{2}^{(\mathrm{g})}+\ldots \underline{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a.) What mass of $\mathrm{CO}_{2(\mathrm{~g})}$ is produced when 100.0 g of $\mathrm{C}_{5} \mathrm{H}_{12}(1)$ is burned?

$$
\text { Answer - } \quad 100.0 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{12} \times \frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}{72.17 \mathrm{~g} \mathrm{C} \mathrm{H}_{12}} \times \frac{5 \mathrm{~mol} \mathrm{Co}_{2}}{1{\mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}^{2}} \times \frac{44.01 \mathrm{~g} \mathrm{Co}_{2}}{1 \mathrm{~mol} \mathrm{Co}_{2}}=304.9 \mathrm{~g} \mathrm{CO}_{2}
$$

b.) What mass of O_{2} is required to produce 60.0 g of $\mathrm{H}_{2} \mathrm{O}(1)$?

Answer - $\quad 60.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H} \mathrm{O}} \mathrm{O} \times \frac{8 \mathrm{~mol} \mathrm{o}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{32.00 \mathrm{~g} \mathrm{o}}{2}-1 \mathrm{~mol} \mathrm{o}_{2} \mathrm{~g} \mathrm{O}$
c.) What mass of $\mathrm{C}_{5} \mathrm{H}_{12}$ (I) is required to produce $90.0 L$ of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP?

Answer - $\quad 90.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Co}_{2}}{22.41 \mathrm{LCO}} \times \frac{1 \mathrm{~mol} \mathrm{Col}_{5} \mathrm{H}_{12}}{5 \mathrm{~mol} \mathrm{Co}_{2}} \times \frac{72.17 \mathrm{~g} \mathrm{Co}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{5} \mathrm{H}_{12}}=58.0 \mathrm{~g} \mathrm{C} \mathrm{C}_{5} \mathrm{H}_{12}$
d.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is required to produce 70.0 g of $\mathrm{CO}_{2(\mathrm{~g})}$?

e.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is required to produce 48.0 L of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP ?

$$
\text { Answer - } \quad 48.0 \mathrm{LCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Co}_{2}}{22.41 \mathrm{LCo}} \times \frac{8 \mathrm{~mol} \mathrm{o}_{2}}{5 \mathrm{~mol} \mathrm{Co}_{2}} \times \frac{22.41 \mathrm{Lo}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=76.8 \mathrm{LO}_{2}
$$

f.) What mass of $\mathrm{H}_{2} \mathrm{O}$ (1) is made when the burning of $\mathrm{C}_{5} \mathrm{H}_{12}$ gives 106 L of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP?

$$
\text { Answer - } \quad 106 \mathrm{~L} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{22.41 \mathrm{~L} \mathrm{CO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=102 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

3.) Tetraethyl lead, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$, is an "antiknock" ingredient which was added to some gasoline. Tetraethyl lead burns according to this equation

$$
2 \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(\mathrm{l})}+27 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+16 \mathrm{CO}_{2}(\mathrm{~g})+20 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is consumed when 100.0 g of PbO (s) are formed?

$$
\text { Answer - } \quad 100.0 \mathrm{~g} \mathrm{PbO} \times \frac{1 \mathrm{~mol} \mathrm{PbO}}{223.2 \mathrm{~g} \mathrm{PbO}} \times \frac{27 \mathrm{~mol} \mathrm{O}}{2 \mathrm{~mol} \mathrm{PbO}} \times \frac{22.41 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=135.5 \mathrm{~L} \mathrm{O}_{2}
$$

b.) How many molecules of CO_{2} are formed when $1.00 \times 10^{-6} \mathrm{~g}$ of tetraethyl lead are burned?

$$
\begin{gathered}
\text { Answer - } 1.00 \times 10^{-6} \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{323.48 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{16 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{6.022 \times 10^{23} \mathrm{molec} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{Co}_{2}}= \\
1.49 \times 10^{16}{\mathrm{molec} \mathrm{CO}_{2}}^{2}
\end{gathered}
$$

c.) How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are formed when 135 molecules of O_{2} react?

$$
\text { Answer - } \quad 135 \text { molec } \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{6.022 \times 10^{23} \mathrm{molec} \mathrm{O}_{2}} \times \frac{20 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{27 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{6.022 \times 10^{23} \mathrm{molec} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=100 . \mathrm{molec} \mathrm{H}_{2} \mathrm{O}
$$

d.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP, in mL , is required to react with 1.00×10^{15} molecules of tetraethyl

$$
\begin{aligned}
& \text { lead? } \quad \begin{array}{l}
\text { Answer - } \\
1.00 \times 10^{15} \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{6.022 \times 10^{23} \mathrm{molec} P b\left(C_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{27 \mathrm{~mol} \mathrm{o}}{2} \\
2 \text { mol } \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}
\end{array} \frac{22.41 \mathrm{LCO} \mathrm{O}_{2}}{1 \mathrm{~mol}_{2}}= \\
& 5.02 \times 10^{-7} \mathrm{LO}_{2} \quad \text { or } \quad 5.02 \times 10^{-4} \mathrm{~mL} \mathrm{O}
\end{aligned}
$$

4.) Nitromethane, a dragster fuel, burns according to the following reaction

$$
\text { _4_CH3 } \mathrm{NO}_{2}(\mathrm{l})+\ldots-\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \text { - } 4 \mathrm{CO}_{2}(\mathrm{~g})+\ldots-6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\ldots \text { _ } \mathrm{N}_{2}(\mathrm{~g})
$$

a.) What mass of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is produced when 0.150 g of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (l) is burned?

Answer -

$$
0.150 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}}{61.05 \mathrm{~g} \mathrm{CH}}{ }_{3} \mathrm{NO}_{2} \quad \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H} \mathrm{H}}{} \mathrm{O} \mathrm{~mol}_{2} \mathrm{O} \mathrm{O}=0.0664 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

b.) What combined volume of gas at STP is produced if 0.316 g of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (1) is burned?

$$
\text { Answer - } \quad 0.316 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}}{61.05 \mathrm{~g} \mathrm{CH} \mathrm{NO}_{2}} \times \frac{12 \mathrm{~mol} \text { gas }}{4 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{22.41 \mathrm{~L} \mathrm{gas}}{1 \mathrm{~mol} \text { gas }}=0.348 \mathrm{~L} \text { gas }
$$

c.) What volume of $\mathrm{O}_{2}(\mathrm{~g})$ at STP is required to produce 0.250 g of $\mathrm{CO}_{2}(\mathrm{~g})$?

$$
\text { Answer - } \quad 0.250 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{co}_{2}}{44.01 \mathrm{~g} \mathrm{Co}_{2}} \times \frac{3 \mathrm{~mol} \mathrm{o}_{2}}{4 \text { mol Co }_{2}} \times \frac{22.41 \mathrm{Lo}_{2}}{1 \mathrm{~mol} \mathrm{o}_{2}}=0.0955 \mathrm{~L} \mathrm{O}_{2}
$$

d.) What mass of $\mathrm{H}_{2} \mathrm{O}$ (I) is produced when 0.410 g of CO_{2} is produced?

Answer -

$$
0.410 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{Co}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.252 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

5.) A sample of high purity silicon is prepared by strongly heating of hydrogen and silicon tetrachloride in a sealed tube: $\quad \ldots \quad \mathrm{SiCl}_{4(\mathrm{~g})}+\ldots __{2} \mathrm{H}_{2(\mathrm{~g})} \rightarrow$ __ $\mathrm{Si}_{(\mathrm{s})}+\ldots 4 \mathrm{HCl}_{(\mathrm{g})}$ If exactly 1.00 g of silicon is required, what mass of each of $\mathrm{SiCl}_{4(\mathrm{~g})}$ and $\mathrm{H}_{2}(\mathrm{~g})$ must react?

$$
\begin{aligned}
& \text { Answer - } \quad 1.00 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}_{28.09 \mathrm{~g} \mathrm{Si}} \times \frac{1 \mathrm{~mol} \mathrm{SiCl}_{4}}{1 \mathrm{~mol} \mathrm{Si}^{2}} \times \frac{169.89 \mathrm{~g} \mathrm{Sicl}_{4}}{1 \mathrm{~mol} \mathrm{SiCl}_{4}}=6.05 \mathrm{~g} \mathrm{SiCl}_{4} .}{} \\
& \text { Answer - } \quad 1.00 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g} \mathrm{Si}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \text { mol Si }} \times \frac{2.02 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2}}=0.144 \mathrm{~g} \mathrm{H}_{2}
\end{aligned}
$$

6.) Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, is a rocket fuel which is prepared according to the reaction

$$
_ \text {_ } \mathrm{NH}_{3}^{(\mathrm{aq})}+\ldots \ldots \mathrm{NaOCl}(\mathrm{aq}) \quad \rightarrow \quad \ldots \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\ldots \ldots \mathrm{NaCl}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})}
$$

NaOCl is common "bleach" and $\mathrm{NH}_{3}{ }_{(\mathrm{aq})}$ is prepared by passing $\mathrm{NH}_{3}{ }_{(\mathrm{g})}$ into water. If $1.25 \times 10^{4} \mathrm{~kg}$ of hydrazine is required, how many litres of ammonia gas, at STP, is required in the reaction?

$$
\text { Answer - } \quad 1.25 \times 10^{7} \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.06 \mathrm{gN}_{2} H_{4}} \times \frac{2 \text { mol NH}_{3}}{1 \text { mol N}_{2} H_{4}} \times \frac{22.41 \mathrm{LNH}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=1.75 \times 10^{7} \mathrm{LNH} H_{3}
$$

7.) One of the most efficient drying agents known as $\mathrm{P}_{4} \mathrm{O}_{10}$ will even remove water from pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce SO_{3} in the manner shown. $\quad \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+6 \mathrm{SO}_{3}(\mathrm{~g})$

Pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) has a density of $1.84 \frac{\mathrm{~g}}{\mathrm{~mL}}$. If 25.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) react, what mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ also reacts and what volume of $\mathrm{SO}_{3(\mathrm{~g})}$ at STP is produced?

$$
\begin{aligned}
& \text { Answer - } \quad 25.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1.84 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}}{6 \text { mol H}_{2} \mathrm{SO}_{4}} \times \frac{283.88 \mathrm{~g} \mathrm{P} \mathrm{P}_{4} \mathrm{O}_{10}}{1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}}=22.18566 \mathrm{~g} \mathrm{P} \mathrm{P}_{4} \mathrm{O}_{10} \\
& 25.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1.84 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.08 \mathrm{~g} \mathrm{H} \mathrm{SO}_{4}} \times \frac{6 \mathrm{~mol} \mathrm{SO}_{3}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{22.41 \mathrm{LSO}_{3}}{1 \mathrm{~mol} \mathrm{SO}_{3}}=10.5 \mathrm{LSO}_{3}
\end{aligned}
$$

8.) Ozone, O_{3}, in the upper atmosphere protects the earth from the sun's harmful ultraviolet radiation. One step in the destruction of the ozone layer by chlorine-containing compounds is
\qquad
The volume of the ozone is estimated to be $1.5 \times 10^{15} \mathrm{~L}$ at STP. Each Chlorine atom is continually
"recycled" so as to be capable of destroying an average of about 1.0×10^{5} molecules of ozone. What mass of chlorine atoms would be required to destroy the available ozone if no repair occurred?

Answer - $1.5 \times 10^{15} \mathrm{~L} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{O}_{3}}{22.41 \mathrm{LO}_{3}} \times \frac{6.022 \times 10^{23} \mathrm{molec} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{O}_{3}} \times \frac{1 \mathrm{atom} \mathrm{Cl}}{1.0 \times 10^{5} \mathrm{molec} \mathrm{O}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{6.022 \times 10^{23} \mathrm{atom} \mathrm{Cl}} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=$

$2.37 \times 10^{10} \mathrm{~g} \mathrm{Cl}$

9.) What is the molar mass of Q if 0.150 mol of R_{4} and 143.8 g of Q_{2} react completely to yield $R Q_{3}$ as the only product? $\quad 6 Q_{2}+R_{4} \rightarrow 4 R Q_{3}$

Answer - $0.150 \mathrm{~mol} R_{4} \times \frac{6 \mathrm{~mol} \mathrm{Q}_{2}}{1 \mathrm{~mol} \mathrm{R}_{4}}=0.900 \mathrm{~mol} \mathrm{Q}_{2} \quad \frac{143.8 \mathrm{~g} \mathrm{Q}}{0.090 \mathrm{~mol} \mathrm{Q}_{2}}=159.7777 \frac{\mathrm{~g}}{\mathrm{~mol}} Q_{2} \frac{159.7777 \frac{\mathrm{~g}}{\mathrm{~mol}}}{2} Q_{2}$ $79.9 \underset{m o t}{\frac{g}{m o t}} Q \quad$ which corresponds to Bromine.
10.) Mercury (II) oxide decomposes when heated. ___ $\mathrm{HgO}(\mathrm{s}) \rightarrow __\underbrace{}_{\text {_ }} \rightarrow+\ldots \mathrm{O}_{2}(\mathrm{~g})$

What mass of HgO decomposes to yield one-third as many atoms as there are in 100.0 g of neon gas?

$$
\begin{aligned}
& \text { Answer - } \quad 100.0 \mathrm{~g} \mathrm{Ne} \times \frac{1 \text { mol } \mathrm{Ne}}{20.18 \mathrm{~g} \mathrm{Ne}} \times \frac{6.022 \times 10^{23} \text { atom } \mathrm{Ne}}{1 \text { mol Ne }}=2.98 \times 10^{24} \div 3=9.94714 \times 10^{23} \text { atoms } \mathrm{Ne} \\
& 9.94714 \times 10^{23} \text { atoms } \mathrm{Ne} \times \frac{1 \text { mol product }}{6.022 \times 10^{23} \text { atom Ne }} \times \frac{2 \text { mol Hgo }}{3 \text { mol products }} \times \frac{216.5 \mathrm{~g} \mathrm{~g} \mathrm{Ho}}{1 \text { mol Hgo }}=238.5 \mathrm{~g} \mathrm{HgO}
\end{aligned}
$$

11.) When 7.682 g of $\mathrm{XZO}_{3}(\mathrm{~s})$ is heated, 2.208 g of $\mathrm{O}_{2}(\mathrm{~g})$ and 5.474 g of $\mathrm{XZ}{ }_{(s)}$ are formed. When XZ is mixed with $\mathrm{AgNO}_{3}(\mathrm{aq})$, all the XZ reacts to form 8.639 g of AgZ (s). Find the molar masses of X and Z.

Answer - 1.) balance both equations 2.) find mol $X Z$
3.) find mol. mass of $X Z$ 4.) find mol. mass of $A g Z$
__ $X Z O O_{3(s)} \rightarrow \quad$ _3_ $O_{2(g)}+__{2} X Z_{(s)}$
$\mathrm{XZ}_{(s)}+\mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \quad \ldots \mathrm{AgZ}_{(\mathrm{s})}+\mathrm{XNO}_{3(\mathrm{~s})}$
$2.208 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{o}}{32.00 \mathrm{~g} \mathrm{o}} \mathrm{o}_{2} \times \frac{2 \mathrm{~mol} \mathrm{XZ}}{3 \mathrm{~mol} \mathrm{o}_{2}}=0.04600 \mathrm{~mol} \mathrm{XZ}$

$\frac{5.474 \mathrm{~g}}{0.04600 \mathrm{~mol}}=119.0 \frac{\mathrm{~g}}{\mathrm{~mol}} \mathrm{XZ}$
$5.474 \mathrm{~g} \mathrm{XZ} \times \frac{1 \mathrm{~mol} \mathrm{XZ}}{119.0 \mathrm{~g} \mathrm{XZ}} \times \frac{1 \mathrm{~mol} \mathrm{AgZ}}{1 \mathrm{~mol} \mathrm{XZ}}=0.04600 \mathrm{~mol} \mathrm{AgZ}$

$$
\frac{8.639 \mathrm{~g}}{0.04600 \mathrm{~mol}}=187.804 \frac{\mathrm{~g}}{\mathrm{~mol}} \mathrm{AgZ} \quad 187.8-107.9=79.9 \frac{\mathrm{~g}}{\mathrm{~mol}} \mathrm{Z} \quad 119-79.9=39.1 \frac{\mathrm{~g}}{\mathrm{~mol}} \mathrm{X}
$$

