Stoichiometry \& Molar Concentrations

Name - \qquad
1.) A student wants to put 50.0 L of hydrogen gas at $S T P$ into a plastic bag by reacting excess aluminum metal with 3.00 M of sodium hydroxide solution according to the reaction below. What volume of NaOH solution is required?

$$
\begin{aligned}
& \text { Answer - } \\
& 50.0 \mathrm{~L} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{22.41 \mathrm{LH}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{3 \mathrm{~mol}_{2}} \times \frac{1 \mathrm{~L} \mathrm{NaOH}}{3.00 \mathrm{~mol} \mathrm{NaOH}}=0.496 \mathrm{~L} \mathrm{NaOH}
\end{aligned}
$$

2.) What volume of 0.250 M HCl is required to completely neutralize 25.0 mL of 0.318 M NaOH ? (Hint balanced equation?) $\quad \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Answer - $\quad 0.025 \mathrm{~L} \mathrm{NaOH} \times \frac{0.318 \mathrm{~mol} \mathrm{NaOH}}{1.00 \mathrm{~L} \mathrm{NaOH}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{NaOH}} \times \frac{1 \mathrm{~L} \mathrm{HCl}}{0.250 \mathrm{~mol} \mathrm{HCl}}=0.0318 \mathrm{~L} \mathrm{HCl}$
3.) A technician analyzes a sample of water from the "tailings" pond of a mine for the presence of mercury. After treating and concentrating the water sample, the technician carries out the titration reaction found below. A 25.0 mL sample of the water containing mercury reacts with 15.4 mL of $0.0148 \mathrm{M} \mathrm{Cl}^{-}$.

$$
\mathrm{Hg}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{HgCl}_{2(\mathrm{~s})}
$$

a.) What is the molar concentration of the mercury in the water sample?

Answer - $\quad 0.0154 \mathrm{~L} \mathrm{Cl}^{-} \times \frac{0.0148 \mathrm{~mol} \mathrm{Cl}^{-}}{1.00 \mathrm{LCl}^{-}} \times \frac{1 \mathrm{~mol} \mathrm{Hg}^{+2}}{2 \mathrm{~mol} \mathrm{Cl}^{-}} \times \frac{1}{0.025 \mathrm{~L}}=0.00456 \mathrm{M} \mathrm{Hg}^{+2}$
b.) What mass of HgCl_{2} is formed in the reaction?

4.) A 0.10 mL sample of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is reacted with 23.5 mL of 0.0156 M HCl .
a.) What is the molarity of the $\mathrm{Ca}(\mathrm{OH})_{2}$ in the saturated solution?

Answer - $\quad 2 \mathrm{HCl}_{(a q)}+\mathrm{Ca}(\mathrm{OH})_{2_{(a q)}} \rightarrow \mathrm{CaCl}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$

$$
0.0235 \mathrm{~L} \mathrm{HCl} \times \frac{0.0156 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}} \times \frac{1}{0.00010 \mathrm{~L}}=1.833 \mathrm{M} \quad 1.8 \mathrm{Ca}(\mathrm{OH})_{2}
$$

b.) What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in 250.0 mL of saturated $\mathrm{Ca}(\mathrm{OH})_{2}$ solution?

Answer - $\quad 0.2500 \mathrm{LCa}(\mathrm{OH})_{2} \times \frac{1.833 \mathrm{~mol} \mathrm{Ca(OH})_{2}}{1 \mathrm{~L}} \times \frac{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ca(OH})_{2}}=33.956 \mathrm{M} \quad 34 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$
5.) A student titrates a 2.00 mL sample of hydrogen peroxide solution, $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq), according to the reaction

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}{ }_{(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Mn}_{(\mathrm{aq})}^{+2}+5 \mathrm{O}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The supply bottle of hydrogen peroxide is labelled as " 3.00% by volume" (3.00 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ per 100 mL of solution), which the student calculates to have $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=1.24 \mathrm{M}$.
a.) What volume of $0.0496 \mathrm{M} \mathrm{MnO}_{4}{ }^{-}$is required for the titration?

$$
\text { Answer - } \quad 0.002 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}_{2} \times \frac{1.24 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}{5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{1 \mathrm{~L}}{0.0496 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}=0.0200 \mathrm{~L} \mathrm{MnO}_{4}^{-}
$$

b.) What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is produced during the reaction?

$$
\text { Answer - } \quad 0.0200 \mathrm{~L} \mathrm{MnO}_{4}^{-} \times \frac{0.0496 \mathrm{~mol} \mathrm{Mno}_{4}^{-}}{1 \mathrm{~L}} \times \frac{5 \mathrm{~mol} \mathrm{o}_{2}}{2 \mathrm{~mol} \mathrm{MnO}_{4}^{-}} \times \frac{22.41 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{ol}_{2}}=0.0556 \mathrm{~L} \mathrm{O}_{2}
$$

6.) A 1.00 mL sample of pure phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, is titrated with 43.8 mL of 0.853 M NaOH according to the reaction \qquad $\mathrm{NaOH}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{Na}_{2} \mathrm{HPO}_{4}+\ldots$ _ $\mathrm{H}_{2} \mathrm{O}$
a.) What is the molar concentration of pure $\mathrm{H}_{3} \mathrm{PO}_{4}$?

Answer - $\quad 0.0438 \mathrm{~L} \mathrm{NaOH} \times \frac{0.853 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{LNaOH}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}^{0}} \times \frac{1}{0.00100 \mathrm{~L}}=18.68 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4} \quad 18.7 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
b.) Calculate the density of pure $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Answer -

$$
\frac{18.68 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{1 \mathrm{~L} \mathrm{H}_{3} \mathrm{PO}_{4}} \times \frac{98.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=\frac{1830.64 \mathrm{~g}}{1 \mathrm{~L}} \mathrm{H}_{3} \mathrm{PO}_{4} \quad \frac{1831 \mathrm{~g}}{1 \mathrm{~L}} \mathrm{H}_{3} \mathrm{PO}_{4}
$$

7.) The iron present in a sample of iron ore is converted to Fe^{+2} and titrated with the dichromate ion

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+6 \mathrm{Fe}^{+2}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{+3}+6 \mathrm{Fe}^{+3}+7 \mathrm{H}_{2} \mathrm{O}
$$

When 17.6 mL of 0.125 M dichromate ion is required to react a 25.0 mL sample of Fe^{+2} solution,
a.) What is the molarity of the Fe^{+2} ?

$$
\text { Answer - } \quad 0.0176 \mathrm{LCr}_{2} \mathrm{O}_{7}{ }^{2-} \times \frac{0.125 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}}{1 \mathrm{LCr}_{2} \mathrm{O}_{7}{ }^{2-}} \times \frac{6 \mathrm{~mol} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}} \times \frac{1}{0.0250 \mathrm{~L}}=0.528 \mathrm{M} \mathrm{Fe}^{2+}
$$

b.) What mass of iron is present in the 25.0 mL sample?

$$
\text { Answer - } \quad 0.0250 \mathrm{~L} \mathrm{Fe}^{2+} \times \frac{0.528 \mathrm{~mol} \mathrm{Fe}}{} \mathrm{AL}^{2+} \mathrm{L}^{5} \times \frac{55.845 \mathrm{~g} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{Fe}^{2+}}=0.737 \mathrm{~g} \mathrm{Fe}^{2+}
$$

8.) Prior to analyzing a fertilizer sample containing $\mathrm{NH}_{4} \mathrm{NO}_{3}$, a chemist makes a test solution by dissolving 15.5 g of pure $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and diluting it to 500.0 mL . If the chemist wishes to carry out the titration
 such that the reaction requires 25.0 mL of NaOH when 10.0 mL of the $\mathrm{NH}_{4} \mathrm{NO}_{3}$ solution is titrated,
a.) What is the molarity of the NaOH they should use?

Answer - $\quad 0.010 \mathrm{~L} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{15.5 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}}{0.500 \mathrm{LNH}_{4} \mathrm{NO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.0426 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{1}{0.025 \mathrm{~L} \mathrm{NaOH}}=0.155 \mathrm{M} \mathrm{NaOH}$
b.) What volume of $\mathrm{NH}_{3}(\mathrm{~g})$ at STP would be produced?

Answer - $\quad 0.010 \mathrm{LNH}_{4} \mathrm{NO}_{3} \times \frac{15.5 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}}{0.500 \mathrm{LNH}_{4} \mathrm{NO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.0426 \mathrm{~g} \mathrm{NH} 44 \mathrm{NO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{22.41 \mathrm{LNH}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=0.0868 \mathrm{~L} \mathrm{NH}_{3}$
9.) The CO_{2} content of a 10.0 L sample of air at STP is determined as follows. The air pumped through a flask containing 25.0 mL of $0.0538 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$, precipitating the CO_{2} present as BaCO_{3}

$$
\ldots \mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+\ldots \mathrm{CO}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{BaCO}_{3(\mathrm{~s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a.) How many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are present in the original $\mathrm{Ba}(\mathrm{OH})_{2}$ solution?

$$
\text { Answer - } \quad 0.0250 \mathrm{LBa}(\mathrm{OH})_{2} \times \frac{0.0538 \mathrm{~mol} \mathrm{Ba(OH)}_{2}}{1 \mathrm{~L}}=0.001345 \mathrm{~g}
$$

b.) Only a small amount of the $\mathrm{Ba}(\mathrm{OH})_{2}$ present reacts with the added CO_{2}. The remaining unreacted $\mathrm{Ba}(\mathrm{OH})_{2}$ is titrated with hydrochloric acid according to the equation
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad$ If the titration requires 23.0 mL of 0.104 M HCl , how many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution after reacting with the CO_{2} in the air?

Answer - $\quad 0.0230 \mathrm{~L} \mathrm{HCl} \times \frac{0.104 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}}=0.001196 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ $0.00120 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$
c.) How many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are reacted by the CO_{2} ?

Answer - $\quad 0.001345-0.001196=0.000149 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$
d.) How many moles of CO_{2} are in the sample of air?

Answer - $\quad 1$ to 1 ratio so $\ldots . .0 .000149 \mathrm{~mol} \mathrm{CO}_{2}$
e.) How many litres of CO_{2} at STP are contained in the 10.0 L sample of air? What percentage of the air sample's volume is CO_{2} ?

Answer - $\quad 0.000154 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{22.4 \mathrm{~L}}{1 \text { mol Co }_{2}}=0.00345 \mathrm{LCO}_{2}$

Answers - 1.) $2 \mathrm{Al}_{(\mathrm{s})}+2 \mathrm{NaOH}_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaAlO}_{2(\mathrm{aq})}+3 \mathrm{H}_{2}(\mathrm{~g})$
0.496 L
2.) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \quad 0.0318 \mathrm{~L}$ 3a.) $0.00456 \mathrm{M} \quad$ b.) 0.0310 g
4.) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ a.) $1.83 \mathrm{M} \quad$ b.) 33.9 g 5a.) $0.0200 \mathrm{~L} \quad$ b.) 0.0556 L
6.) $2 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad$ a.) $18.7 \mathrm{M} \quad$ b.) $\left.1831 \frac{\mathrm{~g}}{\mathrm{~L}} \quad 7 \mathrm{a}.\right) 0.528 \mathrm{M} \quad$ b.) $\left.0.737 \mathrm{~g} \quad 8 \mathrm{a}.\right) 0.155 \mathrm{M} \quad$ b.) 0.0868 L

9a.) 0.00135 mol b.) 0.00120 mol c.) 0.000149 mol
d.) 0.000149 mol
e.) 0.00345 L

