Stoichiometry & Molar Concentrations

Name - _____

1.) A student wants to put 50.0 L of hydrogen gas at STP into a plastic bag by reacting excess aluminum metal with 3.00 M of sodium hydroxide solution according to the reaction below. What volume of NaOH solution is required?

 $\underline{\qquad} AI_{(s)} + \underline{\qquad} NaOH_{(aq)} + \underline{\qquad} H_2O_{(l)} \rightarrow \underline{\qquad} NaAIO_{2(aq)} + \underline{\qquad} H_{2(g)}$

2.) What volume of 0.250 *M HCl* is required to completely neutralize 25.0 *mL* of 0.318 *M* NaOH? (Hint - balanced equation?)

- 3.) A technician analyzes a sample of water from the "tailings" pond of a mine for the presence of mercury. After treating and concentrating the water sample, the technician carries out the titration reaction found below. A 25.0 mL sample of the water containing mercury reacts with 15.4 mL of 0.0148 M Cl⁻.
 Hg⁺² (aq) + 2 Cl⁻ (aq) → HgCl_{2 (s)}
 - a.) What is the molar concentration of the mercury in the water sample?

b.) What mass of HgCl₂ is formed in the reaction?

- 4.) A 0.10 mL sample of saturated solution of Ca(OH)₂ is reacted with 23.5 mL of 0.0156 M HCl.
 - a.) What is the molarity of the $Ca(OH)_2$ in the saturated solution?

b.) What mass of $Ca(OH)_2$ is dissolved in 250.0 mL of saturated $Ca(OH)_2$ solution?

5.) A student titrates a 2.00 mL sample of hydrogen peroxide solution, H₂O_{2 (aq)}, according to the reaction 2 MnO_4^- (aq) + 5 H₂O_{2 (aq)} + 6 H⁺ (aq) \rightarrow 2 Mn⁺² (aq) + 5 O_{2 (g)} + 8 H₂O (l)

The supply bottle of hydrogen peroxide is labelled as "3.00% by volume" (3.00 mL of H₂O₂ per 100 mL of solution), which the student calculates to have [H₂O₂] = 1.24 M.

a.) What volume of $0.0496 M \text{ MnO}_4^-$ is required for the titration?

b.) What volume of $O_{2(q)}$ at STP is produced during the reaction?

6.) A 1.00 mL sample of pure phosphoric acid, H₃PO₄, is titrated with 43.8 mL of 0.853 M NaOH according to the reaction _____ NaOH + ____ H₃PO₄ → _____ Na₂HPO₄ + ____ H₂O

a.) What is the molar concentration of pure H_3PO_4 ?

b.) Calculate the density of pure H_3PO_4 .

7.) The iron present in a sample of iron ore is converted to Fe⁺² and titrated with the dichromate ion

$$Cr_2O_7^{-2}$$
 + 6 Fe⁺² + 14 H⁺ \rightarrow 2 Cr^{+3} + 6 Fe⁺³ + 7 H₂O

When 17.6 mL of 0.125 M dichromate ion is required to react a 25.0 mL sample of Fe^{+2} solution,

a.) What is the molarity of the Fe^{+2} ?

b.) What mass of iron is present in the 25.0 mL sample?

8.) Prior to analyzing a fertilizer sample containing NH₄NO₃, a chemist makes a test solution by dissolving 15.5 g of pure NH₄NO₃ and diluting it to 500.0 mL. If the chemist wishes to carry out the titration reaction _____NH₄NO_{3 (aq)} + _____NaOH (aq) \rightarrow _____NH_{3 (g)} + _____H₂O (1) + _____NaNO_{3 (aq)}

such that the reaction requires 25.0 mL of NaOH when 10.0 mL of the NH4NO3 solution is titrated,

a.) What is the molarity of the NaOH they should use?

b.) What volume of $NH_{3 (g)}$ at STP would be produced?

9.) The CO₂ content of a 10.0 L sample of air at STP is determined as follows. The air pumped through a flask containing 25.0 mL of 0.0538 M Ba(OH)₂, precipitating the CO₂ present as BaCO₃

 $\underline{\qquad} Ba(OH)_{2 (aq)} + \underline{\qquad} CO_{2 (g)} \rightarrow \underline{\qquad} BaCO_{3 (s)} + \underline{\qquad} H_2O_{(I)}$

a.) How many moles of $Ba(OH)_2$ are present in the original $Ba(OH)_2$ solution?

b.) Only a small amount of the Ba(OH)2 present reacts with the added CO2. The remaining unreacted Ba(OH)₂ is titrated with hydrochloric acid according to the equation

 $Ba(OH)_2 + 2 HCI \rightarrow BaCl_2 + 2 H_2O$ If the titration requires 23.0 mL of 0.104 M HCl, how many moles of Ba(OH)₂ solution after reacting with the CO₂ in the air?

c.) How many moles of $Ba(OH)_2$ are reacted by the CO_2 ?

d.) How many moles of CO2 are in the sample of air?

e.) How many litres of CO2 at STP are contained in the 10.0 L sample of air? What percentage of the air sample's volume is CO2?

<u>Answers</u> - 1.) 2 Al $_{(s)}$ + 2 NaOH $_{(aq)}$ + 2 H₂O $_{(l)}$ \rightarrow 2 NaAlO_{2 (aq)} + 3 H_{2 (g)} 0.496 L 2.) HCl + NaOH \rightarrow NaCl + H₂O 0.0318 L **3a.)** 0.00456 M b.) 0.0310 g 4.) $Ca(OH)_2 + 2 HCI \rightarrow CaCl_2 + 2 H_2O$ a.) 1.83 M b.) 33.9 g 5a.) 0.0200 L b.) 0.0556 L6.) 2 NaOH + H₃PO₄ \rightarrow Na₂HPO₄ + 2H₂O a.) 18.7 M b.) 1830 $\frac{g}{r}$ 7a.) 0.528 M b.) 0.737 g 8a.) 0.155 M b.) 0.0868 L

9a.) 0.00135 mol b.) 0.00120 mol c.) 0.000149 mol d.) 0.000149 mol e.) 0.00345 L