Stoichiometry \& Molar Concentrations

Name - \qquad
1.) A student wants to put 50.0 L of hydrogen gas at STP into a plastic bag by reacting excess aluminum metal with 3.00 M of sodium hydroxide solution according to the reaction below. What volume of NaOH solution is required?
\qquad
2.) What volume of 0.250 M HCl is required to completely neutralize 25.0 mL of 0.318 M NaOH ? (Hint balanced equation?)
3.) A technician analyzes a sample of water from the "tailings" pond of a mine for the presence of mercury. After treating and concentrating the water sample, the technician carries out the titration reaction found below. A 25.0 mL sample of the water containing mercury reacts with 15.4 mL of $0.0148 \mathrm{M} \mathrm{Cl}^{-}$. $\mathrm{Hg}^{+2}{ }_{(\text {(q) })}+2 \mathrm{Cl}^{-}{ }_{(\text {aq })} \rightarrow \mathrm{HgCl}_{\text {(} s)}$
a.) What is the molar concentration of the mercury in the water sample?
b.) What mass of HgCl_{2} is formed in the reaction?
4.) A 0.10 mL sample of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is reacted with 23.5 mL of 0.0156 M HCl .
a.) What is the molarity of the $\mathrm{Ca}(\mathrm{OH})_{2}$ in the saturated solution?
b.) What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in 250.0 mL of saturated $\mathrm{Ca}(\mathrm{OH})_{2}$ solution?
5.) A student titrates a 2.00 mL sample of hydrogen peroxide solution, $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq), according to the reaction

$$
2 \mathrm{MnO}_{4^{-}}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Mn}^{+2}{ }_{(\mathrm{aq})}+5 \mathrm{O}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The supply bottle of hydrogen peroxide is labelled as " 3.00% by volume" (3.00 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ per 100 mL of solution), which the student calculates to have $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=1.24 \mathrm{M}$.
a.) What volume of $0.0496 \mathrm{M} \mathrm{MnO}_{4}^{-}$is required for the titration?
b.) What volume of $\mathrm{O}_{2}(\mathrm{~g})$ at $S T P$ is produced during the reaction?
6.) A 1.00 mL sample of pure phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, is titrated with 43.8 mL of 0.853 M NaOH according to the reaction $\quad \mathrm{NaOH}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \int_{-} \mathrm{Na}_{2} \mathrm{HPO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O}$
a.) What is the molar concentration of pure $\mathrm{H}_{3} \mathrm{PO}_{4}$?
b.) Calculate the density of pure $\mathrm{H}_{3} \mathrm{PO}_{4}$.
7.) The iron present in a sample of iron ore is converted to Fe^{+2} and titrated with the dichromate ion

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+6 \mathrm{Fe}^{+2}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{+3}+6 \mathrm{Fe}^{+3}+7 \mathrm{H}_{2} \mathrm{O}
$$

When 17.6 mL of 0.125 M dichromate ion is required to react a 25.0 mL sample of Fe^{+2} solution, a.) What is the molarity of the Fe^{+2} ?
b.) What mass of iron is present in the 25.0 mL sample?
8.) Prior to analyzing a fertilizer sample containing $\mathrm{NH}_{4} \mathrm{NO}_{3}$, a chemist makes a test solution by dissolving 15.5 g of pure $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and diluting it to 500.0 mL . If the chemist wishes to carry out the titration reaction ___ $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\ldots \mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow$ \qquad $\mathrm{NH}_{3}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+$ \qquad $\mathrm{NaNO}_{3}(\mathrm{aq})$ such that the reaction requires 25.0 mL of NaOH when 10.0 mL of the $\mathrm{NH}_{4} \mathrm{NO}_{3}$ solution is titrated, a.) What is the molarity of the NaOH they should use?
b.) What volume of $\mathrm{NH}_{3}{ }_{(g)}$ at STP would be produced?
9.) The CO_{2} content of a 10.0 L sample of air at STP is determined as follows. The air pumped through a flask containing 25.0 mL of $0.0538 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$, precipitating the CO_{2} present as BaCO_{3}
$\ldots \mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+\ldots \mathrm{CO}_{2(\mathrm{~g})} \rightarrow \quad-\mathrm{BaCO}_{3(\mathrm{~s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
a.) How many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are present in the original $\mathrm{Ba}(\mathrm{OH})_{2}$ solution?
b.) Only a small amount of the $\mathrm{Ba}(\mathrm{OH})_{2}$ present reacts with the added CO_{2}. The remaining unreacted $\mathrm{Ba}(\mathrm{OH})_{2}$ is titrated with hydrochloric acid according to the equation
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ If the titration requires 23.0 mL of 0.104 M HCl , how many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution after reacting with the CO_{2} in the air?
c.) How many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are reacted by the CO_{2} ?
d.) How many moles of CO_{2} are in the sample of air?
e.) How many litres of CO_{2} at STP are contained in the 10.0 L sample of air? What percentage of the air sample's volume is CO_{2} ?

