Limiting Reagent

Name - \qquad

1a.) What mass of CS_{2} is produced when 17.5 g of C are reacted with 39.5 g of SO_{2} according to the equation? $\quad 5 \mathrm{C}+2 \mathrm{SO}_{2} \quad \rightarrow \quad \mathrm{CS}_{2}+4 \mathrm{CO}$
b.) What mass of the excess reactant will be left over?

2a.) What mass of NO is produced when 87.0 g of Cu are reacted with 225 g of HNO_{3} ?

The reaction is as follows. $\quad 3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
b.) What mass of the excess reactant will be left over?

3a.) What mass of P_{4} is produced when 41.5 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 26.5 \mathrm{~g}$ of SiO_{2} and 7.80 g of C are reacted according to the following equation. $2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \rightarrow \mathrm{P}_{4}+6 \mathrm{CaSiO}_{3}+10 \mathrm{CO}$
b.) How many grams of each excess reactant will remain unreacted?

4a.) What mass of Br_{2} is produced when 25.0 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, 55.0 \mathrm{~g}$ of KBr and 60.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are reacted.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KBr}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Br}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

b.) How many grams of each excess reactant will remain unreacted?
5.) What volume of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP can be made when $0.0250 L$ of $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})$ (density $=\frac{626.0 \mathrm{~g}}{L}$), is reacted with 40.0 L of $\mathrm{O}_{2(\mathrm{~g})}$ at STP in the following equation.

$$
\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{l})}+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

6.) If 50.0 mL of 0.100 M HCl is allowed to react with 30.0 mL of 0.200 M NaOH , which is the reactant in excess?
7.) If 0.250 g of $\mathrm{Ba}(\mathrm{OH})_{2}$ is mixed with 15.0 mL of 0.125 M HBr , what mass of BaBr_{2} can be formed?

