Dilution Calculations

Name - \qquad
1.) If 20.0 mL of 0.75 M HBr is diluted to a total volume of 90.0 mL , what is the molar concentration of the HBr in the resulting solution?

$$
\text { Answer - } \quad C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.75)(0.020)}{(0.090)} \quad C_{\text {dil }}=0.17 \mathrm{M}
$$

2.) What is the molar concentration of the KOH solution resulting from mixing 55 mL of 0.15 M KOH and 75 mL of 0.25 M KOH ?

$$
\underline{\text { Answer }}-C_{\text {dil }}=\frac{c_{c o n c} \times V_{\text {conc }}}{V_{\text {dil }}}+\frac{c_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.15)(0.055)}{(0.055+0.075)}+\frac{(0.25)(0.075)}{(0.055+0.075)} \quad C_{\text {dil }}=0.21 \mathrm{M}
$$

3.) If 1 drop $(0.050 \mathrm{~mL})$ of 0.20 M NaBr is added to 100.0 mL of water, what is the molarity of the NaBr in the resulting solution?

$$
\text { Answer - } \quad C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.20)(0.000050)}{(0.100+0.00005)} \quad C_{\text {dil }}=1.0 \times 10^{-4} \mathrm{M}
$$

4.) What is the molar concentration of the HNO_{3} solution resulting from mixing 5.0 mL of $3.5 \mathrm{M} \mathrm{HNO}_{3}$ and 95 mL of $0.20 \mathrm{M} \mathrm{HNO}_{3}$?

$$
\text { Answer - } C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}}+\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(3.5)(0.005)}{(0.095+0.005)}+\frac{(0.20)(0.095)}{(0.095+0.005)} \quad C_{\text {dil }}=0.37 \mathrm{M}
$$

5.) Concentrated HNO_{3} is 15.4 M . How would you prepare 2.50 L of $0.375 \mathrm{M} \mathrm{HNO}_{3}$?

Answer - $\quad V_{\text {conc }}=\frac{c_{\text {dil }} \times V_{\text {dil }}}{C_{\text {conc }}} \quad V_{\text {conc }}=\frac{0.375 \times 2.50}{15.4} \quad V_{\text {conc }}=0.0609 \mathrm{~L}$ Mix 60.9 mL with water to make 2.5 L .
6.) Concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$ is 14.6 M . How would you prepare $45.0 L$ of $0.0600 \mathrm{M}_{3} \mathrm{PO}_{4}$?

Answer - $V_{\text {conc }}=\frac{c_{\text {dil }} \times V_{\text {dil }}}{c_{\text {conc }}} \quad V_{\text {conc }}=\frac{(0.0600)(45.0)}{14.6} V_{\text {conc }}=0.185 \mathrm{~L}$ Mix 185 mL with water to make 45.0 L .
7.) If 300.0 mL of solution A contains 25.0 g of KCl and 250.0 mL of solution B contains 60.0 g of KCl , what is the molarity of the KCl in the solution resulting from mixing solutions A and B ?

Answer -

$$
\begin{aligned}
& 25.0 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{74.55 \mathrm{~g} \mathrm{KCl}}=0.335 \mathrm{~mol} \quad 60.0 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{74.55 \mathrm{~g} \mathrm{KCl}}=0.805 \mathrm{~mol} \\
& \frac{(0.335 \mathrm{~mol}+0.805 \mathrm{~mol})}{(0.300 \mathrm{~L}+0.250 \mathrm{~L})}=2.07 \mathrm{M} \mathrm{KCl}
\end{aligned}
$$

8.) If 500.0 mL of 0.750 M NaCl is boiled down until the final volume is reduced to 300.0 mL , what is the final molarity of the NaCl ? (assume no salt is lost).

$$
\text { Answer - } \quad C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.750)(0.500)}{(0.300)} \quad C_{\text {dil }}=1.25 \mathrm{M}
$$

9.) How would you prepare 250.0 mL of 0.350 M HCl , starting with 6.00 M HCl ?

Answer - $\quad V_{\text {conc }}=\frac{c_{\text {dil }} \times V_{\text {dil }}}{C_{\text {conc }}} \quad V_{\text {conc }}=\frac{0.350 \times 0.250}{6.00} \quad V_{\text {conc }}=0.0146 \mathrm{~L}$ Mix 14.6 mL with water to make 250.0 mL
10.) What mass of NaCl is needed to prepare 500.0 mL of 0.400 M NaCl ?

$$
\text { Answer - } \quad 0.500 \mathrm{~L} \mathrm{NaCl} \times \frac{0.400 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~L} \mathrm{NaCl}} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=11.7 \mathrm{~g} \mathrm{NaCl}
$$

11.) What is the concentration of the NaOH solution produced by mixing 125.0 mL of 0.250 M NaOH with 200.0 mL of 0.175 M NaOH ?

$$
\underline{\text { Answer }}-C_{\text {dil }}=\frac{C_{c o n c} \times V_{\text {conc }}}{V_{\text {dil }}}+\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.250)(0.125)}{(0.325)}+\frac{(0.175)(0.200)}{(0.325)} \quad C_{\text {dil }}=0.204 \mathrm{M}
$$

12.) What volume of 12.0 M NaOH is required in order to prepare 3.00 L of 0.750 M NaOH ?

Answer - $\quad V_{\text {conc }}=\frac{c_{\text {dil }} \times V_{\text {dil }}}{C_{\text {conc }}} \quad V_{\text {conc }}=\frac{3.00 \times 0.750}{12.0} \quad V_{\text {conc }}=0.188 \mathrm{~L}$
1.) Add 50% of solution total as water to flask. 2.) Add 188 mL of base. 3.) Top up to 3.00 L flask mark.
13.) What is the concentration of CaCl_{2} produced when 55.0 mL of 0.300 M HCl is mixed with 80.0 mL of $0.550 \mathrm{M} \mathrm{CaCl}_{2}$?

$$
\text { Answer - } \quad C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.550)(0.080)}{(0.135)} \quad C_{\text {dil }}=0.326 \mathrm{M}
$$

14.) When 350.0 mL of $0.250 \mathrm{M} \mathrm{MgCl}_{2}$ is boiled down to a final volume of 275.0 mL , what is the molarity of the MgCl_{2} in the resulting solution?

$$
\text { Answer - } \quad C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.250)(0.350)}{(0.275)} \quad C_{\text {dil }}=0.318 \mathrm{M}
$$

15.) If 20.0 mL of 0.350 M NaCl and 75.0 mL of 0.875 M NaCl are mixed and the resulting solution is boiled down to a volume of 60.0 mL , what is the molarity of the NaCl in the final solution?

$$
\begin{gathered}
\frac{\text { Answer }}{-} C_{c o n c}=\frac{C_{\text {dil }} \times V_{\text {dil }}}{V_{\text {conc }}}+\frac{C_{\text {dil }} \times V_{\text {dil }}}{V_{\text {conc }}} \quad C_{\text {conc }}=\frac{(0.350)(0.020)}{(0.095)}+\frac{(0.875)(0.075)}{(0.095)} \quad C_{c o n c}=0.76447 \mathrm{M} \\
C_{\text {conc }}=\frac{(0.76447)(0.095)}{(0.060)} \quad C_{\text {conc }}=1.21 \mathrm{M}
\end{gathered}
$$

16.) A solution is made by mixing 100.0 mL of $0.200 \mathrm{M} \mathrm{BaCl}_{2}$ and 150 mL of 0.400 M NaCl . What is the concentration of sodium chloride in the final solution?
Answer -
$C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}}$
$C_{\text {dil }}=\frac{(0.400)(0.150)}{(0.250)}$
$C_{\text {dil }}=0.240 \mathrm{M}$
17.) If 75.0 mL of $0.200 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ is added to 25.0 mL of $0.800 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$, what is the concentration of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in the mixture?

$$
\text { Answer - } \quad C_{d i l}=\frac{C_{c o n c} \times V_{c o n c}}{V_{d i l}} \quad C_{d i l}=\frac{(0.200)(0.075)}{(0.100)} \quad C_{d i l}=0.150 \mathrm{M}
$$

