Solutions Part 1

Name - \qquad
1.) Write an equation for the dissociation of each of the following in water.
a.) $\mathrm{BaCl}_{2}(\mathrm{~s})$
\rightarrow
b.) $\mathrm{AgNO}_{3(s)} \rightarrow$
c.) $\mathrm{Mg}(\mathrm{OH})_{2(s)} \rightarrow$
d.) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightarrow$
e.) $\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow$
f.) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s}) \rightarrow$
2.) Which of the above solutions are electrical conductors?
3.) If 1.00 L of a 1.00 M solution of AgNO_{3} was mixed, then;
a.) $\left[\mathrm{Ag}^{+}\right]=$
b.) $\left[\mathrm{NO}_{3}^{-}\right]=$
4.) If $500 . m L$ of a 1.00 M solution of BaCl_{2} was mixed, then;
a.) How many moles of Ba^{+2} are present?
b.) $\left[B a^{+2}\right]=$
c.) How many moles of Cl^{-}are present?
d.) $\left[\mathrm{Cl}^{-}\right]=$
5.) If $500 . \mathrm{mL}$ of 1.00 M NaCl was added to the solution in question 4, then;
a.) $\left[\mathrm{Ba}^{+2}\right]=$
b.) $\left[\mathrm{Cl}^{-}\right]=$

