\qquad
Complete all the questions. Show work where needed.

1. Which of the following does not define solubility?
A. the maximum mass of solute that can dissolve in a given volume of solution
B. the minimum moles of solute needed to produce one litre of saturated solution
C. the moles of solute dissolved in a given volume of solution
D. the concentration of solute in a saturated solution.
2. Given a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$, which of the following statements is always true?
A. The $\left[\mathrm{Ca}^{+2}\right]$ is twice that of $\left[\mathrm{OH}^{-}\right]$
B. The rate of dissolving is greater than the rate of crystallization
C. The rate of crystallization equals the rate of dissolving
D. The OH^{-}precipitates half as fast as the Ca^{+2}
3. Consider the following equilibrium:

$$
\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

Which of the following graphs best describes the $\left[\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}\right]$ after equilibrium has been established?
A.

B.

C.

D.

4. Consider the following diagram:

The following three beakers each contain different volumes of a saturated solution of PbI_{2} and different masses of solid PbI_{2} :

What is the relationship for the $\left[\mathrm{Pb}^{2+}\right]$ in the solution in the three beakers?
A. I $<$ III $<$ II
B. II $<$ III $<$ I
C. $\mathrm{I}=\mathrm{II}=\mathrm{III}$
D. I $>$ II $>$ III
5. A saturated solution is prepared by dissolving a salt in water. Which of the following graphs could represent the ion concentrations as the temperature is increased?
A.

B.

C.

Concentration	anion
	cation
	cation

D.

Time
6. The ion concentrations in 3.00 L of a $0.250 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are
$\left[\mathrm{Al}^{+3}\right] \quad\left[\mathrm{SO}_{4}{ }^{-2}\right]$
A. $1.50 \mathrm{M} \quad 2.25 \mathrm{M}$
B. $0.500 \mathrm{M} \quad 0.750 \mathrm{M}$
C. $0.250 \mathrm{M} \quad 0.250 \mathrm{M}$
D. $0.750 \mathrm{M} \quad 0.750 \mathrm{M}$
7. Which of the following solutions would have $\left[\mathrm{Fe}^{+3}\right]=0.020 \mathrm{M}$?
A. 0.50 L of a $0.040 \mathrm{M} \mathrm{FeC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ solution
B. 0.40 L of a $0.050 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ solution
C. 0.50 L of a $0.010 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$ solution
D. 0.80 L of a $0.020 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution
8. The solubility of SrCO_{3} is $2.4 \times 10^{-5} \mathrm{M}$. How many moles of dissolved solute are present in 100.0 mL of saturated SrCO_{3} solution?
A. $2.4 \times 10^{-6} \mathrm{~mole}$
B. $2.4 \times 10^{-4} \mathrm{~mol}$
C. $5.6 \times 10^{-10} \mathrm{~mol}$
D. $2.4 \times 10^{-5} \mathrm{~mol}$
9. In every solubility equilibrium, the rate of dissolving is
A. less than the rate of crystallization
B. greater than the rate of crystallization
C. equal to zero
D. equal to the rate of crystallization
10. What are the ion concentrations in 2.5 L of a $0.30 \mathrm{M} \mathrm{CuCl}_{2}$?

	$\left[\mathrm{Cu}^{+2}\right]$	$\left[\mathrm{Cl}^{-}\right]$
A.	0.15 M	0.30 M
B.	1.5 M	0.75 M
C.	0.75 M	1.5 M
D.	0.30 M	0.60 M

11. A 3.0 L solution of BaCl_{2} has a chloride ion concentration of 0.20 M . The barium ion concentration in this solution is
A. 0.20 M
B. 0.10 M
C. 0.067 M
D. 0.60 M
12. What is the $\left[\mathrm{OH}^{-}\right]$in 250 mL of a $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$?
A. 0.20 M
B. 0.40 M
C. 0.050 M
D. 0.10 M
13. What is the concentration of the ions in 3.0 L of $0.50 \mathrm{M} \mathrm{AgClO}_{3}$?

	$\left[\mathrm{Ag}^{+}\right]$
A. 0.50 M	$\left[\mathrm{ClO}_{3}-\right]$
B. 1.5 M	1.5 M
C. 0.17 M	4.5 M
D. 0.50 M	0.17 M
	0.50 M

14. What is the [Cl-] when 1.50 grams of NaCl is dissolved in enough water to make 100.0 mL of solution?
A. 0.150 M
B. 0.390 M
C. 0.256 M
D. 15.0 M
15. Which of the following compounds could be used to prepare a solution with a $\left[\mathrm{S}^{-2}\right]$ greater than 0.1 M?
A. $\mathrm{Ag}_{2} \mathrm{~S}$
B. CaS
C. CuS
D. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
16. Which of the following compounds could be used to prepare a solution with a $\left[\mathrm{SO}_{3}{ }^{-2}\right]$ greater than 0.10 M ?
A. $\mathrm{Ag}_{2} \mathrm{SO}_{3}$
B. $\mathrm{H}_{2} \mathrm{SO}_{3}$
C. CuSO_{3}
D. CaSO_{3}
17. Which of the following would form a saturated solution when 0.0100 mol of the solid solute is added to 100.0 mL of water?
A. NaCN
B. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
C. BaCO_{3}
D. FeSO_{4}
18. Which compound will have the greatest solubility in water?
A. CaSO_{4}
B. AgCl
C. BaCO_{3}
D. CuCl_{2}
19. Which of the following would be true when equal volumes of $0.2 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 0.2 M BaS are combined?
A. no precipitate forms
B. precipitates of both $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ and BaSO_{4} form
C. a precipitate of BaSO_{4} forms
D. a precipitate of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ forms
20. What will happen when equal volumes of $0.20 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ and $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ are mixed?
A. Both SrS and $\mathrm{NH}_{4} \mathrm{OH}$ precipitate
B. SrS precipitates.
C. No precipitate forms
D. $\mathrm{NH}_{4} \mathrm{OH}$ presipitates
21. Which of the following would be true when equal volumes of 0.2 M CaS and $0.2 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are combined?
A. precipitates of both $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ and CaSO_{4} form
B. a precipitate of CaSO_{4} forms
C. no precipitate forms
D. a precipitate of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ forms
22. What happens when 10.0 mL of $0.2 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ is added to 10.0 mL of $0.2 \mathrm{M} \mathrm{Rb}_{2} \mathrm{SO}_{4}$?
A. No precipitate forms
B. Precipitates of RbOH and SrSO_{4} form
C. A precipiate of SrSO_{4} forms
D. A precipitate of RbOH forms
23. Which of the following will not form a precipitate when mixed with an equal amount of 0.2 M AgNO_{3} ?
A. 0.2 M NaBr
B. $0.2 \mathrm{M} \mathrm{NaBrO}_{3}$
C. 0.2 M NaOH
D. $0.2 \mathrm{M} \mathrm{NaNO}_{3}$
24. Which of the following will not form a precipitate when mixed with an equal amount of 0.2 M $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
A. 0.2 M NaBr
B. $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$
C. 0.2 M NaOH
D. $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$
25. A solution contains $0.2 \mathrm{M} \mathrm{Zn}^{+2}$ and $0.2 \mathrm{M} \mathrm{Sr}^{+2}$. An equal volume of a second solution was added, forming a precipitate with the Zn^{+2} but not the Sr^{+2}. What was present in the second solution?
A. $0.2 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}$
B. $0.2 \mathrm{M} \mathrm{SO}_{3}{ }^{-2}$
C. $0.2 \mathrm{M} \mathrm{Cl}^{-}$
D. $0.2 \mathrm{M} \mathrm{OH}^{-}$
26. A solution contains $0.2 \mathrm{M} \mathrm{Pb}^{+2}$ and $0.2 \mathrm{M} \mathrm{Sr}^{+2}$. An equal volume of a second solution was added, forming a precipitate with the Pb^{+2} but not the Sr^{+2}. What was present in the second solution?
A. $0.2 \mathrm{M} \mathrm{S}^{-2}$
B. $0.2 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}$
C. $0.2 \mathrm{M} \mathrm{NO}_{3}^{-}$
D. $0.2 \mathrm{M} \mathrm{PO}_{4}{ }^{-3}$
27. What is the net ionic equation for the reaction that occurs when equal volumes of 0.20 M BaS and $0.20 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are mixed?
A. $3 \mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+3 \mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+2 \mathrm{Fe}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{~S}^{-2}{ }_{(\mathrm{aq})} \Rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})$
B. $3 \mathrm{BaS}_{(\mathrm{aq})}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})} \Rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
C. $3 \mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+3 \mathrm{SO}_{4}^{-2}(\mathrm{aq}) \Rightarrow 3 \mathrm{BaSO}_{4}(\mathrm{~s})$
D. $2 \mathrm{Fe}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{~S}^{-2}(\mathrm{aq}) \Rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
28. What is the formula equation for the reaction that occurs when equal volumes of 0.20 M BaS and $0.20 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are mixed?
A. $3 \mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+3 \mathrm{SO}_{4}^{-2}(\mathrm{aq}) \Rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}$
B. $3 \mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+3 \mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+2 \mathrm{Fe}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{~S}^{-2}{ }_{(\mathrm{aq})} \Rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})$
C. $3 \mathrm{BaS}_{(\mathrm{aq})}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})} \Rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
D. $2 \mathrm{Fe}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{~S}^{-2}(\mathrm{aq}) \Rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
29. What is the complete ionic equation for the reaction that occurs when equal volumes of 0.20 M $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed?
A. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{Na}_{2} \mathrm{SO}_{4 \text { (aq) }} \Rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3 \text { (aq) }}$
B. $\mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \Rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
C. $\mathrm{Ba}^{+2}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+2 \mathrm{Na}_{(\mathrm{aq})}^{+}+2 \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \Rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{Na}_{(\mathrm{aq})}^{+}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
D. $2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \Rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{~s})$
30. What is the net ionic equation for the reaction that occurs when equal volumes of 0.20 M $\mathrm{K}_{3} \mathrm{PO}_{4}$ and $0.20 \mathrm{M} \mathrm{ZnCl}_{2}$ are mixed together?
A. $2 \mathrm{~K}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{ZnCl}_{2(\mathrm{aq})} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+6 \mathrm{KCl}_{(\mathrm{aq})}$
B. $2 \mathrm{~K}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{ZnCl}_{2(\mathrm{aq})} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{aq})}+6 \mathrm{KCl}_{(\mathrm{s})}$
C. $3 \mathrm{Zn}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$
D. $\mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{KCl}_{(\mathrm{s})}$
31. When equal volumes of 0.20 M BaS and $0.20 \mathrm{M} \mathrm{FeCl}_{3}$ are mixed, a precipitate forms.
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
32. When equal volumes of $0.20 \mathrm{M}_{2} \mathrm{SO}_{3}$ and $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ are mixed, a precipitate forms.
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
33. When equal volumes of $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $0.20 \mathrm{M} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ are mixed a precipitate forms.
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
34. When equal volumes of $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{SCN}$ and $0.20 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are mixed, a precipitate forms.
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
35. When equal volumes of $0.20 \mathrm{M} \mathrm{CuSO}_{4}$ and $0.20 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4}$ are mixed what happens?
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
36. When equal volumes of $0.20 \mathrm{M} \mathrm{Ni}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ are mixed what happens?
a. Write the formula equation for the above reaction.
b. Write the complete ionic equation for the above reaction.
c. Write the net ionic equation for the above reaction.
37. A solution contains both Ag^{+}and Mg^{+2} ions. During selective precipitation, these ions are removed one at a time by adding
A. $\mathrm{SO}_{4}{ }^{-2}$ followed by Cl^{-}
B. I^{-}followed by OH^{-}
C. $\mathrm{NO}_{3}{ }^{-}$followed by PO_{4}^{-3}
D. OH^{-}followed by S^{-2}
38. A solution contains both Pb^{+2} and Mg^{+2} ions. During selective precipitation, these ions are removed one at a time by adding
A. SO_{4}^{-2} followed by Cl^{-}
B. Cl^{-}followed by PO_{4}^{-3}
C. S^{-2} followed by SO_{4}^{-2}
D. OH^{-}followed by S^{-2}
39. A solution contains both $0.2 \mathrm{M} \mathrm{Mg}^{+2}$ (aq) and $0.2 \mathrm{M} \mathrm{Sr}^{+2}$ (aq). These ions can be removed separately through precipitation by adding equal volumes of 0.2 M solutions of
A. CO_{3}^{-2} and then SO_{4}^{-2}
B. SO_{4}^{-2} and then S^{-2}
C. OH^{-}and then SO_{4}^{-2}
D. Cl^{-}and then OH^{-}
40. Using the solubility table, determine which of the following ions could not be used to separate S^{-2} from SO_{4}^{-2} by precipitation.
A. Cu^{+2}
B. Ca^{+2}
C. NH_{4}^{+}
D. Zn^{+2}
41. Using the solubility table, determine which of the following ions could not be used to separate OH^{-1} from SO_{4}^{-2} by precipitation.
A. Cu^{+2}
B. Sr^{+2}
C. Ba^{+2}
D. Zn^{+2}
42. Using the solubility table, determine which of the following ions could be used to separate OH^{-1} from $\mathrm{SO}_{3}{ }^{-2}$ by precipitation.
A. Cu^{+2}
B. Sr^{+2}
C. Ba^{+2}
D. Zn^{+2}
43. A solution is prepared containing both $0.2 \mathrm{M} \mathrm{S}^{2-}$ and $0.2 \mathrm{M} \mathrm{PO}_{4}{ }^{3-}$ ions. An equal volume of a second solution is added in order to precipitate only one of these two anions. The second solution must contain which of the following?
A. $0.2 \mathrm{M} \mathrm{Pb}^{+2}$
B. $0.2 \mathrm{M} \mathrm{Cs}^{+}$
C. $0.2 \mathrm{Sr}^{+2}$
D. $0.2 \mathrm{M} \mathrm{Zn}^{+2}$
44. A solution is found to contain $\mathrm{NaBr}(\mathrm{aq}), \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Li}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ in solution. Devise a procedure by which each of the anions in the solution can be removed, one at a time. The solutions that are available to use are:

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{NH}_{4} \mathrm{NO}_{3} \quad \mathrm{AgNO}_{3} \quad \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}
$$

1. First you would add \qquad . The precipitate formed would be \qquad Filter out the precipitate.
2. To the remaining solution add \qquad . The precipitate formed would be
\qquad . Filter out the precipitate.
3. To the remaining solution add \qquad . The precipitate formed would be
\qquad . FIlter out the precipitate.
4. A solution is found to contain $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}), \mathrm{AgNO}_{3}(\mathrm{aq}), \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$ in solution. Devise a procedure by which each of the cations in the solution can be removed, one at a time. The solutions that are available to use are:
$\mathrm{NaI} \quad \mathrm{KNO}_{3} \quad \mathrm{Li}_{2} \mathrm{SO}_{4} \quad \mathrm{KOH}$
5. First you would add \qquad . The precipitate formed would be \qquad Filter out the precipitate.
6. To the remaining solution add \qquad . The precipitate formed would be
\qquad . Filter out the precipitate.
7. To the remaining solution add \qquad . The precipitate formed would be . FIlter out the precipitate.
8. A solution is found to contain CuSO_{4} (aq) in solution. Devise a procedure by which each of the cations in the solution can be removed, one at a time. The solutions that are available to use are:
$\mathrm{BaI}_{2} \quad \mathrm{CaS} \quad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4} \quad \mathrm{NH}_{4} \mathrm{Cl}$
9. First you would add \qquad . The precipitate formed would be \qquad Filter out the precipitate.
10. To the remaining solution add \qquad . The precipitate formed would be
\qquad . Filter out the precipitate.

Consider the following:

47.
a. Fill in the blanks below that would separate the Ca^{+2} ions from the S^{-2} ions using the solids samples. Indicate which sample you would add first, and the precipitate that would form. Indicate which sample you would add second and the precipitate that would form then.

First, add \qquad . The precipitate formed would be \qquad
Second, add \qquad . The precipitate formed would be \qquad
b. Write the net ionic equations for one of the precipitation reactions in part (a)
48. Consider the following:

Which of the following could be the unknown solution?
A. $0.20 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$
B. $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $0.20 \mathrm{M} \mathrm{NaNO}_{3}$
D. 0.20 M KOH
49.

A precipitate forms when a 0.20 M solution containing an unknown cation is added to $\mathrm{SO}_{4}{ }^{2-}$, but not when an equal volume is added to S^{2-}.
(2 marks)

The unknown cation is
A. Zn^{+2}
B. Mg^{+2}
C. Pb^{+2}
D. Ba^{+2}

When 10.0 mL of $0.20 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a 10.0 mL sample of 0.20 M unknown solution, no precipitate forms. When the same volume of $0.20 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a separate 10.0 mL sample of the unknown solution, a precipitate does form.
(2 marks)

50.

The unknown solution could be
A. KOH
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{K}_{2} \mathrm{~S}$
51. Which anion would be most effective in removing the cations responsible for hard water?
A. S^{-2}
B. $\mathrm{SO}_{4}{ }^{-2}$
C. $\mathrm{SO}_{3}{ }^{-2}$
D. Cl^{-}
52. For a saturated solution, the $K_{s p}$ expression does not contain any solid solute term. What is the reason for this?
A. The solid solute does not change in concentration.
B. The solid solute continues to change in amount.
C. The solid solute is a product.
D. The solid solute is a reactant.
53. The Ksp expression for a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is
A. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{+2}\right][\mathrm{OH}=]^{2}$

$$
\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]
$$

B. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{+2}\right]\left[2 \mathrm{OH}^{-}\right]$
C. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
D. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{+2}\right]\left[2 \mathrm{OH}^{-}\right]^{2}$
54. The $K_{s p}$ expression for a saturated solution of $\mathrm{Ba}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$ would be
A. $\mathrm{Ksp}=\left[\mathrm{Ba}^{+2}\right]^{3}\left[\mathrm{AsO}_{4}{ }^{-3}\right]^{2}$
B. $\mathrm{Ksp}=\left[3 \mathrm{Ba}^{+2}\right]\left[2 \mathrm{AsO}_{4}^{-3}\right]$
C. $\mathrm{Ksp}=\left[\mathrm{Ba}^{+2}\right]^{3}\left[\mathrm{AsO}_{4} 4^{-3}\right]^{2}$

$$
\mathrm{Ba}_{3}\left(\mathrm{AsO}_{4}\right)_{2}
$$

D. $\mathrm{Ksp}=\left[3 \mathrm{Ba}^{+2}\right]^{3}\left[2 \mathrm{AsO}_{4}{ }^{-3}\right]^{2}$
55. The $\mathrm{K}_{\text {sp }}$ expression for a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{3}$ is
A. $\mathrm{K}_{\mathrm{sp}}=\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{3}{ }^{-2}\right]$
B. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}_{2}{ }^{+2}\right]\left[\mathrm{SO}_{3}{ }^{-2}\right]$
C. $\mathrm{K}_{\mathrm{sp}}=\left[2 \mathrm{Ag}^{+}\right]\left[\mathrm{SO}_{3}^{-2}\right]$
D. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{3}^{-2}\right]$
56. Which of the following expressions represents $\left[\mathrm{Fe}^{+3}\right]$ in a saturated $\mathrm{Fe}(\mathrm{OH})_{3}$ solution?
A. $\left[\mathrm{Fe}^{+3}\right]=$ Ksp ${ }^{3}\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{Fe}^{+3}\right]=\mathrm{Ksp}$ $\left[\mathrm{OH}^{-}\right]^{3}$
C. $\left[\mathrm{Fe}^{+3}\right]=\underline{\mathrm{Ksp}}$
D. $\left[\mathrm{Fe}^{+3}\right]=\mathrm{Ksp} \mathrm{x}\left[\mathrm{OH}^{-}\right]^{3}$
57. Which of the following is the K_{sp} expression for barium phosphate?
A. $\mathrm{K}_{\mathrm{sp}}=\left[3 \mathrm{Ba}^{+2}\right]\left[2 \mathrm{PO}_{4}^{-3}\right]$
B. $K_{\text {sp }}=\left[3 \mathrm{Ba}^{+2}\right]^{3}\left[2 \mathrm{PO}_{4}^{-3}\right]^{2}$
C. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{PO}_{4}^{-3}\right]$
D. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{+2}\right]^{3}\left[\mathrm{PO}_{4}^{-3}\right]^{2}$
58. What is the $\mathrm{K}_{\text {sp }}$ expression for the precipitate formed when solutions of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and $\mathrm{Sr}(\mathrm{OH})_{2}$ are mixed?
A. $\mathrm{K}_{\text {sp }}=\left[\mathrm{Sr}^{+2}\right]\left[\mathrm{NO}_{3}^{-}\right]^{2}$
B. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Fe}^{+3}\right]\left[3 \mathrm{OH}^{-}\right]^{3}$
C. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Sr}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
D. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Fe}^{+3}\right]\left[\mathrm{OH}^{-}\right]^{3}$
59. Which relationship can be used to determine the $[\mathrm{Ba}+2]$ in a saturated solution of barium phosphate?
A.

$$
\left[\mathrm{Ba}^{2+}\right]=\frac{\mathrm{K}_{s p}}{\left[\mathrm{PO}_{4}{ }^{3-}\right]}
$$

C.

$$
\left[\mathrm{Ba}^{2+}\right]=\sqrt[3]{\frac{\mathrm{K}_{s p}}{\left[\mathrm{PO}_{4}^{3-}\right]^{2}}}
$$

B.

$$
\left[\mathrm{Ba}^{2+}\right]=\sqrt[3]{\mathrm{K}_{s p}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}}
$$

D.

$$
\left[\mathrm{Ba}^{2+}\right]=\sqrt{\frac{\mathrm{K}_{s p}}{\left[\mathrm{PO}_{4}{ }^{3-}\right]}}
$$

60. In a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ the $\left[\mathrm{Ag}^{+}\right]=2.2 \times 10^{-4} \mathrm{M}$. What is the $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in this solution?
A. 4.8×10^{-8}
B. 5.3×10^{-12}
C. 4.3×10^{-11}
D. 1.1×10^{-4}
61. How many moles of solute are dissolved in 200.0 mL of a saturated solution of FeS ?
A. 7.7×10^{-10} moles
B. 1.2×10^{-19} moles
C. 1.5×10^{-10} moles
D. 3.9×10^{-9} moles
62. Consider the following saturated solutions:

$$
\mathrm{CuSO}_{4}, \mathrm{BaSO}_{4}, \mathrm{CaSO}_{4}
$$

the order of cation concentration, from highest to lowest is
A. $\left[\mathrm{Cu}^{+2}\right]>\left[\mathrm{Ba}^{+2}\right]>\left[\mathrm{Ca}^{+2}\right]$
B. $\left[\mathrm{Cu}^{+2}\right]>\left[\mathrm{Ca}^{+2}\right]>\left[\mathrm{Ba}^{+2}\right]$
C. $\left[\mathrm{Ba}^{+2}\right]>\left[\mathrm{Ca}^{+2}\right]>\left[\mathrm{Cu}^{+2}\right]$
D. $\left[\mathrm{Ca}^{+2}\right]>\left[\mathrm{Cu}^{+2}\right]>\left[\mathrm{Ba}^{+2}\right]$
63. The solubility of CdCO_{3} is $2.5 \times 10^{-6} \mathrm{M}$. Calculate the K_{sp} value for CdCO_{3}.
A. 5.0×10^{-6}
B. 1.6×10^{-3}
C. 2.5×10^{-6}
D. 6.3×10^{-12}
64. What is the value of K_{sp} for $\mathrm{Zn}(\mathrm{OH})_{2}$ if the solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ is equal to $4.2 \times 10-6 \mathrm{M}$?
A. 1.8×10^{-11}
B. 4.0×10^{-3}
C. 1.0×10^{-2}
D. 3.0×10^{-16}
65. Calculate the solubility of PbSO_{4}
A. $1.3 \times 10^{-4} \mathrm{M}$
B. $3.6 \times 10^{-8} \mathrm{M}$
C. $3.2 \times 10^{-16} \mathrm{M}$
D. $1.8 \times 10^{-8} \mathrm{M}$
66. The solubility of ZnCO_{3} is $6.4 \times 10^{-9} \mathrm{M}$ What is the value of $\mathrm{K}_{\text {sp }}$ for ZnCO_{3} ?
A. 1.3×10^{-8}
B. 8.0×10^{-5}
C. 6.4×10^{-9}
D. 4.1×10^{-17}
67. The solubility of $\operatorname{Mg}(\mathrm{OH})_{2}$ is found to be $1.2 \times 10^{-4} \mathrm{M}$. What is its $\mathrm{K}_{\text {sp }}$?
A. 1.4×10^{-8}
B. $1.2 \times 10-4$
C. 6.9×10^{-12}
D. 1.7×10^{-12}
68. Which of the following saturated solutions will have the lowest $\left[\mathrm{IO}_{3}^{-1}\right]$?
A. NaIO_{3}
B. $\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$
C. $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$
D. AgIO_{3}
69. Calculate the solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$.
A. $8.3 \times 10^{-4} \mathrm{M}$
B. $4.8 \times 10^{-5} \mathrm{M}$
C. $2.3 \times 10^{-9} \mathrm{M}$
D. $1.2 \times 10^{-5} \mathrm{M}$
70. Which of the following saturated solutions will have the lowest $\left[\mathrm{S}^{-2}\right]$?
A. CuS
B. ZnS
C. BaS
D. CaS
71. Which of the following saturated solutions will have the lowest $\left[\mathrm{CO}_{3}^{-2}\right]$?
A. CaCO_{3}
B. SrCO_{3}
C. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D. BaCO_{3}
72. How many moles of dissolved solute are present in 100.0 mL of a saturated SrCO_{3} solution?
A. $2.4 \times 10^{-5} \mathrm{~mol}$
B. $2.3 \times 10^{-4} \mathrm{~mol}$
C. $5.6 \times 10^{-11} \mathrm{~mol}$
D. $2.4 \times 10^{-6} \mathrm{~mol}$
73. What is the solubility of SrF_{2} ?
A. $4.3 \times 10^{-9} \mathrm{M}$
B. $1.0 \times 10^{-3} \mathrm{M}$
C. $6.6 \times 10^{-5} \mathrm{M}$
D. $1.8 \times 10^{-17} \mathrm{M}$
74. Which of the following compounds is the least soluble in water?
A. PbCl_{2}
B. CsI
C. CuI_{2}
D. PbI_{2}
75. A saturated solution of nickel carbonate, NiCO_{3}, contains 0.090 g in 2.0 L of solution. Calculate the K_{sp} for NiCO_{3}.
76. After a 50.0 mL sample of a saturated solution of $\mathrm{Cu}_{2} \mathrm{SO}_{3}$ was heated to dryness, $7.2 \times 10^{-4} \mathrm{~g}$ of solid $\mathrm{Cu}_{2} \mathrm{SO}_{3}$ remained. What is the value of K_{sp} for $\mathrm{Cu}_{2} \mathrm{SO}_{3}$
77. Calculate the solubility of SrSO_{4} in grams per litre.
78. Calculate the solubility of PbSO_{4} in grams per litre.
79. Calculate the iodate ion concentration in a saturated copper(II) iodate solution.
80. What is the maximum $\left[\mathrm{Ag}^{+}\right]$that can exist in a solution of $0.010 \mathrm{M} \mathrm{NaIO}_{3}$?
A. $3.2 \times 10^{-10} \mathrm{M}$
B. $1.8 \times 10^{-4} \mathrm{M}$
C. $3.2 \times 10^{-6} \mathrm{M}$
D. $3.2 \times 10^{-8} \mathrm{M}$
81. Determine the maximum $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$ that can exist in 5.0 L of a $0.0010 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ without forming a precipitate.
A. $2.6 \times 10^{-6} \mathrm{M}$
B. $5.1 \times 10^{-5} \mathrm{M}$
C. $2.6 \times 10^{-12} \mathrm{M}$
D. $2.6 \times 10^{-9} \mathrm{M}$
82. What is the maximum number of moles of Cl^{-}that can exist in 500.0 mL of $2.0 \mathrm{M} \mathrm{AgNO}_{3}$?
A. 1.8×10^{-8}
B. 4.5×10^{-11}
C. 1.8×10^{-9}
D. 9.0×10^{-11}
83. Which of the following ions would have the highest concentration in $0.1 \mathrm{M} \mathrm{CO}_{3}{ }^{-2}$?
A. Sr^{+2}
B. Mg^{+2}
C. Ba^{+2}
D. Ca^{+2}
84. Which of the following ions would have the highest concentration in $0.1 \mathrm{M} \mathrm{Ag}^{+}$?
A. $\mathrm{CO}_{3}{ }^{-2}$
B. Br^{-}
C. Cl^{-}
D. $\mathrm{CrO}_{4}{ }^{-2}$
85. Which of the following ions could be used in the lowest concentration to remove $0.0010 \mathrm{M} \mathrm{Ag}^{+}$ ions from a polluted water sample?
A. IO_{3}^{-}
B. $\mathrm{CO}_{3}{ }^{-2}$
C. Br^{-}
D. $\mathrm{Cl}-$
86. Which of the following ions could be used in the lowest concentration to remove $0.0010 \mathrm{M} \mathrm{Pb}^{+2}$ ions from a polluted water sample?
A. Cl^{-}
B. $\mathrm{SO}_{4}{ }^{-2}$
C. I^{-}
D. Br^{-}
87. Calculate the maximum $\left[\mathrm{CO}_{3}{ }^{-2}\right]$ that can exist in a $0.0010 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
88. Calculate the maximum $\left[\mathrm{CO}_{3}^{-2}\right]$ that can exist in a $0.0010 \mathrm{M} \mathrm{AgNO}_{3}$
89. Calculate the mass of NaI necessary to begin precipitation of Cu^{+}from a 250.0 mL sample of $0.010 \mathrm{M} \mathrm{CuNO}_{3}$.
90. Calculate the mass of NaCl necessary to begin precipitation of Ag^{+}from a 250.0 mL sample of $0.010 \mathrm{M} \mathrm{AgNO}_{3}$.
91. Calculate the maximum mass of BaCl_{2} (s) that can be added to 250 mL of $0.50 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ without forming a precipitate of PbCl_{2}.
92. Consider the following equilibrium:

$$
\mathrm{Fe}(\mathrm{OH})_{2(\mathrm{~s})} \leftrightarrows \mathrm{Fe}^{+2}(\mathrm{aq}) \quad+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

Which of the following will cause the equilibrium to shift to the right?
A. adding $\mathrm{Fe}(\mathrm{OH})_{2}$
B. adding $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
C. adding KOH
D. adding $\mathrm{Na}_{2} \mathrm{~S}$
93. Consider the following equilibrium:

$$
\mathrm{AgIO}_{3(\mathrm{~s})} \quad \leftrightarrows \quad \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{IO}_{3}^{-}(\mathrm{aq})
$$

A few crystals of NaIO_{3} are added to the above equilibrium. When equilibrium is re-established, how do the new ion concentrations compare with the original equilibrium concentrations?

$$
\left[\mathrm{Ag}^{+}\right] \quad\left[\mathrm{IO}_{3}^{-}\right]
$$

A. increased increased
B. increased decreased
C. decreased decreased
D. decreased increased
94. Consider the following equilibrium:

$$
\mathrm{CaSO}_{4(\mathrm{~s})} \quad \leftrightarrows \quad \mathrm{Ca}^{+2}\left(\mathrm { aq) } \left(\mathrm{SO}_{4}^{-2}(\mathrm{aq})\right.\right.
$$

Which of the following would shift the above equilibrium to the left?
A. removing some Ca^{+2} (aq)
B. removing some $\mathrm{SO}_{4}{ }^{-2}(\mathrm{aq})$
C. adding $\mathrm{MgSO}_{4(\mathrm{~s})}$
D. adding $\mathrm{CaSO}_{4(\mathrm{~s})}$
95. Which of the following is true when solid $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a saturated solution of CuS and equilibrium is reestablished?
A. $\left[\mathrm{S}^{-2}\right]$ does not change
B. $\left[\mathrm{Cu}^{+2}\right]$ increases
C. $\left[\mathrm{S}^{-2}\right]$ increases
D. $\left[\mathrm{Cu}^{+2}\right]$ does not change
96. Which of the following is true when solid NaOH is added to a saturated solution of CuS and equilibrium is reestablished?
A. $\left[\mathrm{S}^{-2}\right]$ does not change
B. $\left[\mathrm{Cu}^{+2}\right]$ does not change
C. $\left[\mathrm{Cu}^{+2}\right]$ increases
D. $\left[\mathrm{S}^{-2}\right]$ increases
97. Solid NaI is added to a saturated AgCl solution. How have $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$changed when equilibrium has been reestablished?
$\left[\mathrm{Ag}^{+}\right]$
[Cl^{-}]
A. increased increased
B. decreased
C. increased
D. stayed the same
increased decreased
stayed the same
98. Consider the following equilibrium:

$$
\mathrm{CaSO}_{4(\mathrm{~s})} \quad \leftrightarrows \quad \mathrm{Ca}^{2+(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

When $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is added to this solution, which of the following will occur in regards to the equilibrium and $\left[\mathrm{Ca}^{2+}\right]$?

Equilibrium $\quad\left[\mathrm{Ca}^{2+}\right]$
A. shifts left increases
B. shifts left decreases
C. shifts right increases
D. shifts right decreases
99. Consider the following equilibrium:

$$
\text { energy }+\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Addition of which of the following will increase the solubility of AgCl ?
A. AgNO_{3}
B. a catalyst
C. HCl
D. heat
100. Consider the following equilibrium:

$$
\text { energy }+\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Addition of which of the following will increase the solubility of AgCl ?
A. AgNO_{3}
B. decrease the volume
C. HCl
D. NaBr
101. In which of the following would $\mathrm{PbCl}_{2(\mathrm{~s})}$ be the least soluble?
A. $1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
B. $1 \mathrm{M} \mathrm{BaCl}_{2}$
C. 1 M HCl
D. $1 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
102. What will be the effect of adding some solid AgNO_{3} to a saturated solution of AgCl ?
A. More AgCl will be produced.
B. The AgNO_{3} will not affect the AgCl equilibrium.
C. The AgNO_{3} will not dissolve.
D. More AgCl will dissolve.
103. What will be the effect of adding some solid $\mathrm{K}_{2} \mathrm{SO}_{4}$ to a saturated solution of AgCl ?
A. More AgCl will be produced.
B. The $\mathrm{K}_{2} \mathrm{SO}_{4}$ will not affect the AgCl equilibrium.
C. More AgCl will dissolve.
D. The $\mathrm{K}_{2} \mathrm{SO}_{4}$ will not dissolve.
104. What will be the effect of adding some solid $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ to a saturated solution of AgCl ?
A. More AgCl will be produced.
B. The $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ will not affect the AgCl equilibrium.
C. The $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ will not dissolve.
D. More AgCl will dissolve.
105. Solid BaSO_{4} is added to water to prepare a saturated solution. Which of the following is true for this equilibrium?
A. the rate of dissolving $=$ rate of crystallization
B. $\left[\mathrm{BaSO}_{4}\right]=\left[\mathrm{Ba}^{+2}\right]^{2}$
C. solubility $=1.1 \times 10^{-10} \mathrm{M}$
D. trial K_{sp} is less than K_{sp}
106. The following data was collected to determine the solubility of a substance:

Mass of solute dissolved	5.00 g
Volume of solvent	250.0 mL
Molar mass of solute	$100.0 \mathrm{~g} / \mathrm{mol}$
Molar mass of solvent	$20.0 \mathrm{~g} / \mathrm{mol}$

Which of the following best describes its solubility?
A. $2.00 \times 10^{-2} \mathrm{~g} / \mathrm{mL}$
B. $\quad 1.00 \mathrm{~mol} / \mathrm{L}$
C. 0.250 mol
D. $5.00 \times 10^{-2} \mathrm{~mol}$
107. When equal volumes of 0.2 M solutions are mixed, which of the following combinations will form a single precipitate?
A. CuSO_{4} and CaCl_{2}
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$
C. BaS and NaI
D. ZnSO_{4} and SrS
108. What is the concentration of the ions in 3.0 L of $0.50 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?

$$
\left[\mathrm{Fe}^{+3}\right] \quad\left[\mathrm{SO}_{4}{ }^{-2}\right]
$$

A. $1.5 \mathrm{M} \quad 1.5 \mathrm{M}$
B. $3.0 \mathrm{M} \quad 4.5 \mathrm{M}$
C. $0.33 \mathrm{M} \quad 0.50 \mathrm{M}$
D. $1.0 \mathrm{M} \quad 1.5 \mathrm{M}$
109. Which compound will have the lowest solubility?
A. AgIO_{3}
B. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
C. $\mathrm{Fe}(\mathrm{OH})_{2}$
D. CaSO_{4}
110. A solution contains $0.2 \mathrm{M} \mathrm{Cu}^{+2}$ and $0.2 \mathrm{M} \mathrm{Sr}^{+2}$. An equal volume of a second solution was added, forming a precipitate with the Cu^{+2} but not the Sr^{+2}. What was present in the second solution?
A. $0.2 \mathrm{M} \mathrm{S}^{-2}$
B. $0.2 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}$
C. $0.2 \mathrm{M} \mathrm{Cl}^{-}$
D. $0.2 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$
111. A solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3(\mathrm{aq})}$ is mixed with a solution of $\mathrm{CaCl}_{2 \text { (aq) }}$.
a. Write the formula equation for the reaction.
b. Write the complete ionic equation for the reaction.
c. Write the net ionic equation for the reaction.
b. Explain what happens when some $\mathrm{CaS}_{(\mathrm{s})}$ is added to the contents.
112. A solution is found to contain $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (aq), $\mathrm{CuNO}_{3 \text { (aq) }}, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (aq) in solution. Devise a procedure by which each of the cations in the solution can be removed, one at a time. The solutions that are available to use are:
$\begin{array}{llll}\mathrm{NaI} & \mathrm{KNO}_{3} & \mathrm{Li}_{2} \mathrm{SO}_{4} & \mathrm{KOH}\end{array}$

1. First you would add \qquad . The precipitate formed would be \qquad Filter out the precipitate.
2. To the remaining solution add \qquad . The precipitate formed would be
\qquad . Filter out the precipitate.
3. To the remaining solution add \qquad . The precipitate formed would be
\qquad . FIlter out the precipitate.

An experiment is conducted to identify an unknown cation that is present in each of four beakers.

113.

Which of the following is the unknown cation?
A. Ba^{+2}
B. Be^{+2}
C. Fe^{+3}
D. Ag^{+1}

An experiment is conducted to identify an unknown cation that is present in each of four beakers.

no precipitate

precipitate

no precipitate
114.

Which of the following is the unknown cation?
A. Sr^{+2}
B. Be^{+2}
C. Cr^{+2}
D. Rb^{+1}
115. A solution is prepared containing both $0.2 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}$ and $0.2 \mathrm{M} \mathrm{PO}_{4}{ }^{3-}$ ions. An equal volume of a second solution is added in order to precipitate only one of these two anions. The second solution must contain which of the following?
A. $0.2 \mathrm{M} \mathrm{Pb}^{+2}$
B. $0.2 \mathrm{Sr}^{+2}$
C. $0.2 \mathrm{M} \mathrm{Cs}^{+}$
D. $0.2 \mathrm{M} \mathrm{Zn}^{+2}$
116. The solubility of NiCO_{3} is $4.4 \times 10^{-2} \mathrm{~g} / \mathrm{L}$. Determine the $\mathrm{K}_{\text {sp }}$ value for NiCO_{3}.
A. 1.9×10^{-3}
B. 1.4×10^{-7}
C. 2.1×10^{-1}
D. 3.7×10^{-4}
117. A compound has a solubility of $7.1 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. The compound is
A. AgBr
B. CaSO_{4}
C. CuS
D. CaCO_{3}
118. At $25^{\circ} \mathrm{C}$, what is the $\left[\mathrm{Cl}^{-}\right]$in a saturated solution of PbCl_{2} ?
A. $2.3 \times 10^{-2} \mathrm{M}$
B. $4.6 \times 10^{-2} \mathrm{M}$
C. $1.4 \times 10^{-2} \mathrm{M}$
D. $2.9 \times 10^{-2} \mathrm{M}$
119. Which of the following compounds is the least soluble in water?
A. CsOH
B. AgBrO_{3}
C. CuI
D. BeS
120. In a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ the $\left[\mathrm{Ag}^{+}\right]=2.2 \times 10^{-4} \mathrm{M}$. What is the solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in this solution?
A. $2.2 \times 10^{-4} \mathrm{M}$
B. $4.4 \times 10^{-4} \mathrm{M}$
C. $5.2 \times 10^{-12} \mathrm{M}$
D. $1.1 \times 10^{-4} \mathrm{M}$

An experiment is conducted to identify an unknown cation that is present in each of four beakers.

precipitate

no precipitate

precipitate

no precipitate
121.

Which of the following is the unknown cation?
A. Ca^{+2}
B. Be^{+2}
C. Sn^{+2}
D. K^{+1}
122. An equal number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added to four different 10.0 mL testtubes.

Sample 1	Sample 2	Sample 3	Sample 4
$0.50 \mathrm{M} \mathrm{Ba}_{(a q)}^{2+}$	$0.50 \mathrm{M} \mathrm{Ca}_{(a q)}^{2+}$	$0.50 \mathrm{M} \mathrm{Mg}_{(a q)}^{2+}$	$0.50 \mathrm{M} \mathrm{Sr}_{(a q)}^{2+}$

A precipitate forms in only one of the samples. Identify the cation which is present in the precipitate.
A. Sr^{+2}
B. Mg^{+2}
C. Ca^{+2}
D. Ba^{+2}
123. The solubility of CaF_{2} is $3.3 \times 10^{-4} \mathrm{M}$. Determine the K_{sp} for CaF_{2}.
A. 1.4×10^{-10}
B. 3.3×10^{-4}
C. 3.6×10^{-11}
D. 1.1×10^{-7}
124. Calculate the mass of NaCl necessary to begin precipitation of Pb^{+2} from a 250.0 mL sample of $0.010 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
125. Consider the following equilibrium:

$$
\mathrm{Fe}(\mathrm{OH})_{2(\mathrm{~s})} \leftrightarrows \mathrm{Fe}^{+2}(\mathrm{aq}) \quad+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

Which of the following will cause the equilibrium to shift to the left?
A. adding KOH
B. adding $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
C. adding $\mathrm{Fe}(\mathrm{OH})_{2}$
D. adding $\mathrm{Na}_{2} \mathrm{~S}$

