Solubility Constant Product Calculations Practice

Part 2

1.) Will a precipitate form if 1.0 L of $3.0 \times 10^{-10} M$ Fe⁺² is added to 1.0 L of $1.2 \times 10^{-8} M$ S⁻²?

2.) What concentration of S^{-2} is required to just start precipitation of CuS from a $0.20\,M$ solution of CuCl₂?

3.) What F⁻ concentration is required to just start precipitating CaF_2 from a 0.30×10^{-3} M solution of $CaNO_3$? $K_{sp} = 1.5 \times 10^{-10}$ for CaF_2 .

4.) Will a precipitate form when $10.0~mL~of~1.0\times10^{-3}~M$ Pb(NO₃)₂ is added to $40.0~mL~of~1.5\times10^{-4}~M$ Na₂SO₄?

5.) A precipitate barely forms when $20.0\,mL$ of 3.0×10^{-3} M Ni⁺² is added to $60.0\,mL$ of 2.52×10^{-4} M CO₃⁻². What is K_{sp} for NiCO₃?

6.) Does a precipitate form when $25.0 \, mL \, of \, 1.0 \times 10^{-4} \, M \, Zn(NO_3)_2$ is added to $45.0 \, mL \, of \, 2.4 \times 10^{-5} \, M$ Ca(OH)₂? $K_{sp} = 4.1 \times 10^{-17}$ for Zn(OH)₂.

7.) When $100.0~mL~of~4.0\times10^{-2}~M~CaCl_2$ is added to $150.0~mL~of~2.9\times10^{-2}~M~NaOH$, A precipitate of Ca(OH)₂ just starts to form. What is K_{sp} for Ca(OH)₂?

8.) Does a precipitate form when $20.0~mL~of~5.0\times10^{-5}~M~Ca^{+2}$ is added to $35.0~mL~of~2.5\times10^{-4}~M~C_2O_4^{-2}$ and the resulting solution is boiled down to a total volume of 25.0~mL.

9.) If $0.1\,M\,Pb^{+2}$ is added dropwise to a solution having $0.10\,M\,Cl^-$, $0.10\,M\,I^-$, and $0.10\,M\,SO_4^{-2}$, which precipitate will form first?