Polarity

Name - _____

1.) Which of the following molecules will be polar and which will be nonpolar?

2.) Examine the following melting temperatures. All the molecules are polar.

 $NH_3 = -78^{\circ}C$ $PH_3 = -133^{\circ}C$ $AsH_3 = -116^{\circ}C$ $SbH_3 = -88^{\circ}C$

a.) Why do the melting temperatures of SbH $_3$, AsH $_3$ and PH $_3$ steadily decrease?

b.) Why does the melting temperature of NH₃ suddenly increase going from PH₃ up to NH₃?

3.) Which of the following substances would you expect to involve hydrogen bonds?

- 4.) Suggest a reason why liquid propane has a very low viscosity, whereas liquid glycerine has a very high viscosity Propane = CH₂-CH₂-CH₂ alveerine = CH₂ CH CH₂ CH₂
 - viscosity. Propane = CH₃-CH₂-CH₃ glycerine = CH₂ CH CH₂ | | | OH OH OH

- 5.) Classify each of the following with respect to the **most important** type(s) of bonding or forces(s) existing **between** the particles.
 - a.) 2 molecules of O_2 in O_2 (s)
 - b.) 2 atoms of Xe in Xe (s)
 - c.) An atom of C and an atom of Cl in CCl_4
 - d.) 2 molecules of CH_3F in CH_3F (I)
 - e.) F and Cs in CsF (s)
 - f.) atoms of He and Kr
- 6.) Which should melt at a higher temperature and why?
 - a.) He or Xe
 - b.) HBr and Kr
 - c.) CH_3 - CH_3 or HO- CH_2 - CH_2 -OH
 - d.) F_2 or Br_2

"Ohhhhhhh . . . Look at that, Schuster . . . Dags are so cute when they try ta comprehend quantum mechanics."