Net Ionic Equations and Precipitation Reactions

1. Use a <u>Table of Solubilities</u> to predict whether or not the following compounds are soluble in water.

Compound	Soluble (yes or no)	
CaI ₂	yes	
MgSO ₄	yes	
AIPO ₄	no	
Pb(NO ₃) ₂	yes	
Ag ₂ SO ₄	no no	
Ca(OH) ₂		

2. Write formulas for the following compounds, and using a Table of Solubilities predict whether or not the compound is soluble in water.

		Formula	Soluble (y/n)
a.	potassium phosphate	K ₃ PO ₄	yes
b.	calcium carbonate	CaCO ₃	No
c.	copper(II) bromide	CuBr ₂	Yes
d.	aluminium sulphide	Al ₂ S ₃	No

3. For each of the following reactions, predict the products of the reaction. Be sure to write **balanced equations**.

Then determine if any of the products forms a precipitate.

- If no precipitate forms, write NR (for "No Reaction").
- If a precipitate forms, write the **net ionic equation** for the reaction.

a.
$$Mg(NO_3)_{2 (aq)}$$
 + 2 $NaOH_{(aq)} \rightarrow Mg(OH)_{2 (s)}$ + _2_ $NaNO_{3 (aq)}$

b.
$$CuSO_{4(aq)} + FeCl_{3(aq)} \rightarrow$$

c.
$$K_2CO_{3(aq)} + Sr(OH)_{2(aq)} \rightarrow SrCO_{3(s)} + _2 KOH_{(aq)}$$

- 4. An aqueous solution contains a mixture of Ba^{2+} , Pb^{2+} and Ca^{2+} . Select the **ONE** negative ion listed below which could be used to separate Pb^{2+} from the other two positive ions in the mixture.
 - a. NO₃-
 - <u>b.</u> <u>S²⁻</u>
 - c. OH
 - d. PO₄³⁻
 - e. 504²⁻
- 5. An aqueous solution containing the following cations:

$$Ca^{2+}$$
 Ag^{+} Cu^{2+} K^{+}

In order to separate them, the following solutions are available:

If we wish to separate the cations by causing only one cation to precipitate out of solution as a time:

- in what order should the solutions Na₂S, Na₂CO₃, and NaBr be added? NaBr, Na₂S, Na₂CO₃
- identify the three precipitates that form after the addition of those solutions.

which one cation will remain in solution? K⁺