Net Ionic Equations and Precipitation Reactions

Name - \qquad

1. Use a Table of Solubilities to predict whether or not the following compounds are soluble in water.

Compound	Soluble (yes or no)
CaI_{2}	yes
MgSO_{4}	yes
AlPO_{4}	no
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	yes
$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	no
$\mathrm{Ca}(\mathrm{OH})_{2}$	no

2. Write formulas for the following compounds, and using a Table of Solubilities predict whether or not the compound is soluble in water.

Formula
a. potassium phosphate
b. calcium carbonate
c. copper(II) bromide
d. aluminium sulphide
$\mathrm{K}_{3} \mathrm{PO}_{4}$
CaCO_{3}
CuBr_{2}
$\mathrm{Al}_{2} \mathrm{~S}_{3}$
3. For each of the following reactions, predict the products of the reaction. Be sure to write balanced equations.

Then determine if any of the products forms a precipitate.

- If no precipitate forms, write NR (for "No Reaction").
- If a precipitate forms, write the net ionic equation for the reaction.
a. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}+__{2} \mathrm{NaNO}_{3(\mathrm{aq})}$
b. $\mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{FeCl}_{3(\mathrm{qq})} \rightarrow \quad \mathrm{NR}$
c. $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \quad-\mathrm{SrCO}_{3(\mathrm{~s})}+__{2} _\mathrm{KOH}(\mathrm{aq})$

4. An aqueous solution contains a mixture of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$ and Ca^{2+}. Select the ONE negative ion listed below which could be used to separate Pb^{2+} from the other two positive ions in the mixture.
a. NO_{3}^{-}
b. S^{2-}
c. OH^{-}
d. $\mathrm{PO}_{4}{ }^{3-}$
e. $\mathrm{SO}_{4}{ }^{2-}$
5. An aqueous solution containing the following cations:
$\mathrm{Ca}^{2+} \quad \mathrm{Ag}^{+} \quad \mathrm{Cu}^{2+} \quad \mathrm{K}^{+}$
In order to separate them, the following solutions are available:
$\mathrm{Na}_{2} \mathrm{~S} \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{NaBr}$
If we wish to separate the cations by causing only one cation to precipitate out of solution as a time:

- in what order should the solutions $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and NaBr be added? $\mathrm{NaBr}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
- identify the three precipitates that form after the addition of those solutions.
$\mathrm{AgBr}, \mathrm{CuS}, \mathrm{CaCO}_{3}$
- which one cation will remain in solution? K^{+}

