Common Ion Effect

1.) A new kettle was used to make tea using "temporarily hard" water. After a few weeks there was a thin layer of white scale on the inside of the kettle. Suggest the chemical formula for the kettle scale.

<u>Answer</u> - $Ca^{+2} + 2 HCO_3^- + energy \rightarrow CaCO_{3(s)} + CO_2 + H_2O$ (CaCO₃)

(temporary differs from permanent only in the fact that HCO_3^- is also dissolved in the water with the Ca^{+2}).

- 2.) Is it possible to distinguish between temporarily hard and permanently hard water by adding washing soda and seeing if a precipitate forms?
 - <u>Answer</u> No. adding Na₂CO₃ (washing soda) will precipitate the Mg⁺² and the Ca⁺² whether there is HCO₃⁻ or not. If HCO₃⁻ is present (as in the question above) then only heat is required to precipitate the Ca⁺² and Mg⁺².
- 3.) Cities whose water supply has temporarily hard water often have problems with the hot water pipes in homes becoming clogged and having decreased water flow. Why might this be?
 <u>Answer</u> as some of the water evaporates or is heated the Ca⁺² (and to a lesser extent Mg⁺²) are

precipitating out and clogging the pipes up over time.

4.) The solubility of Sr(OH)₂ is about 0.5 M at 25°C. What are two ways you could increase the solubility and decreasing the solubility in water.

	<u>Answer</u> -	Increase	Decrea	<u>se</u>	
	1.) - incre	ease temperature	- decrease te	mperature	
	2.) - add	CaS. The S ⁻² will precipita	te - add NaOH. T	he increased OH ⁻ will	
	out Si	⁺² and shift equilibrium rig	ght. drive the equ	uilibrium to the reactants.	
	(Common ion effect)		(Cor	(Common ion effect)	
5.)) A metal plate had an unwanted coating of CaCO $_{3 (s)}$. How might you dissolve this coating?				
	<u>Answer</u> – increase solubili	ase solubility of CaCO ₃ . Add a chemical like Na ₃ PO ₄ to dissolve the Ca ⁺² .			
6.)	In which solution would $SrCl_{2}$ (s) be the most soluble? In which would it be least soluble? Explain.				
	a . 1 <i>M NaNO</i> ₃	b . 1 <i>M Na</i> ₂ <i>SO</i> ₄	c . $1 M Sr(NO_3)_2$	d . 1 <i>MgCl</i> ₂	
	Answer - Most soluble in Na ₂ SO ₄ as the sulphate will precipitate with the strontium, driving the reaction t				

the products (more soluble).

- <u>Least soluble</u> in MgCl₂ as the chloride is a common ion and so drives the reaction back to the reactant (solid SrCl₂). The Sr(NO₃)₂ is also a common ion like the Cl⁻ BUT the Cl⁻ is trice as concentrated from the MgCl₂ driving the reaction to the reactants more!