Chemistry 11 Review

Dissolving Chemicals in Water

1.) Write the equation for the equilibrium reaction existing in each of the following saturated aqueous solutions.
a.) $\mathrm{K}_{3} \mathrm{PO}_{4}$
b.) $\mathrm{NH}_{4} \mathrm{Cl}$
a.) Answer $-\mathrm{K}_{3} \mathrm{PO}_{4}{ }_{(s)} \leftrightarrow 3 \mathrm{~K}^{+}{ }_{(\mathrm{aq})}+\mathrm{PO}_{4}{ }^{-3}{ }_{(\mathrm{aq})}$
b.) Answer $-\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \leftrightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\text {aq })}$
c.) Answer $-\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Al}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{NO}_{3^{-}}{ }_{(\mathrm{aq})}$
c.) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
2.) Write the crystallization reaction involving $\mathrm{MgBr}_{2}(\mathrm{~s})$.

$$
\text { Answer }-\mathrm{Mg}^{+2}{ }_{(a q)}+2 \mathrm{Br}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{MgBr}_{2(s)}
$$

3.) Write the dissolving reaction involving $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6 \text { (s) }}$. Answer $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6 \text { (aq) }}$
4.) A container containing a saturated solution of NaCl is carefully picked up and 100 mL of the solution is poured into a second container. If you are careful not to transfer any of the crystals will the second containers salt solution be saturated?

Answer - No. There must be an equilibrium established for a truly saturated solution. No solids (table salt) means there is no chemical on both sides of the equilibrium so there is no equilibrium.
5.) A student half filled a 100 mL container with water and added a few grams of NaCl crystals. Seeing the crystals sink and settle on the bottom, the student said the solution must be saturated. Was the student correct? Why?

Answer - No. There is time needed for the dissociation reaction to occur. This could be anywhere from a few minutes to days.
6.) Aluminium fluoride has a solubility of $5.59 \mathrm{~g} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$. Express this solubility in $\frac{\mathrm{mol}}{\mathrm{L}}$ or M.

$$
\text { Answer }-\frac{5.59 \mathrm{~g}}{L} \times \frac{1 \mathrm{~mol}}{83.8 \mathrm{~g}}=\quad=0.06670 \mathrm{M} \quad=0.0667 \mathrm{M} \mathrm{AlBr}_{3}
$$

7.) Lead (II) chloride has a solubility of $0.99 \frac{g}{100.0} m L$ at $20^{\circ} \mathrm{C}$. Calculate the molar solubility.

$$
\text { Answer }-\frac{0.99 \mathrm{~g}}{100 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{278.1 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=\quad=0.035599 \mathrm{M} \quad=0.036 \mathrm{M} \mathrm{PbCl}_{2}
$$

8.) The molar solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is $1.2 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. Express this value in $\frac{g}{100.0 \mathrm{~mL}}$.

$$
\underline{\text { Answer }}-\frac{1.2 \times 10^{-4} \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{275.75 \mathrm{~g}}{1 \mathrm{~mol}} \times 0.100 \mathrm{~L}=\quad=0.003309 \mathrm{~g}(\text { per } 100 \mathrm{~mL}) \quad=\frac{0.0033 \mathrm{~g}}{100.0 \mathrm{~mL}} \mathrm{Ag}_{2} \mathrm{CO}_{3}
$$

9.) Manganese (II) chloride has a molar solubility of 5.75 M at $0^{\circ} \mathrm{C}$. If 125 mL of the saturated solution is evaporated to dryness, what mass of the chemical will be left?

$$
\text { Answer }-\frac{5.75 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{125.84 \mathrm{~g}}{1 \text { mol }} \times 0.125 \mathrm{~L}=\quad=90.4475 \mathrm{~g} \quad=90.4 \mathrm{~g} \mathrm{MnCl}_{2}
$$

10.) Calculate the concentration of each ion in each of the following solutions.
a.) $0.25 \mathrm{M} \mathrm{FeCl}_{3} \quad$ Answer $-\mathrm{FeCl}_{3(s)} \leftrightarrow \mathrm{Fe}^{+3}{ }_{(a q)}+3 \mathrm{Cl}^{-}{ }_{(a q)}$ 1:1:3 ratio
$0.25 \mathrm{MFe}^{+3}$ and $0.75 \mathrm{M} \mathrm{Cl}^{-}$
b.) $1.5 \times 10^{-3} \mathrm{M} \mathrm{Al} l_{2}\left(\mathrm{SO}_{4}\right)_{3}$

$$
\begin{gathered}
\text { Answer - }-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(s)} \leftrightarrow 2 \mathrm{Al}^{+3}{ }_{(a q)}+3 \mathrm{SO}_{4}^{-2}{ }_{(a q)} \\
3.0 \times 10^{-3} \mathrm{M} \mathrm{Al}^{+3} \text { and } 4.5 \times 10^{-3} \mathrm{MSO}_{4}^{-2}
\end{gathered}
$$

c.) $12.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in 2.50 L Answer - $\quad 12.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{96.11 \mathrm{~g}} \times \frac{1}{2.50 \mathrm{~L}}=0.0499427 \mathrm{M}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}{ }_{(\mathrm{s})} \leftrightarrow 2 \mathrm{NH}_{4}{ }_{(\text {aq) }}+\mathrm{CO}_{3}{ }^{-2}{ }_{(\text {aq) }} \quad$ 1:2:1 ratio $\quad 0.0 .100 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$and $0.0499 \mathrm{M} \mathrm{CO}_{3}{ }^{-2}$
d.) $0.41 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ in 500 mL of aqueous solution

$$
\text { Answer }-0.41 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{74.10 \mathrm{~g}} \times \frac{1}{0.500 \mathrm{~L}}=0.011066 \mathrm{M}
$$

$$
\mathrm{Ca}(\mathrm{OH})_{2} \leftrightarrow \mathrm{Ca}^{+2}+2 \mathrm{OH}^{-} \quad 1: 1: 2 \text { ratio } \quad 0.01 \mathrm{M} \mathrm{Ca}^{+2} \text { and } 0.02 \mathrm{M} \mathrm{OH}^{-}
$$

11.) a.) Write an equation showing the equilibrium in a saturated solution of lead (II) bromide.

Answer - $\quad \mathrm{PbBr}_{2(\mathrm{aq})} \leftrightarrow \mathrm{Pb}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Br}^{-}{ }_{(\mathrm{aq})}$
b.) The solubility of PbBr_{2} is $0.844 \frac{g}{100 \mathrm{~mL}}$. What is its molar solubility?

$$
\text { Answer }-\frac{0.844 \mathrm{~g}}{100 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{367.0 \mathrm{~g}}=0.0229973 \mathrm{M} \quad=0.230 \mathrm{M}
$$

c.) Calculate the concentration of $\mathrm{Pb}^{+2}{ }_{(\text {aq })}$ and $\mathrm{Br}^{-}{ }_{(\text {aq })}$ in a saturated solution of PbBr_{2}.
Answer - $\mathrm{PbBr}_{2(\mathrm{aq})} \leftrightarrow \mathrm{Pb}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Br}^{-}{ }_{(\mathrm{aq})} \quad 1: 1: 2$
$0.230 \mathrm{M} \quad 0.230 \mathrm{M} \quad 0.460 \mathrm{M}$
12.) Calculate the concentration of each of the following ions present when
a.) 25.0 mL of water is added to 20.0 mL of $0.35 \mathrm{M} \mathrm{Fe}^{+3}$.

$$
\begin{gathered}
\text { Answer }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.35) \times(0.0200)=\left(C_{\text {dil }}\right) \times(0.0450) \\
{\left[F e^{+3}\right]_{\text {dil }}=0.035 \mathrm{M} \times \frac{0.0200 L}{(0.020+0.025) L}=0.16 \mathrm{M}}
\end{gathered}
$$

b.) 50.0 mL of $0.25 \mathrm{M} \mathrm{Ag}^{+}$is mixed with 100.0 mL of $0.10 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$.

$$
\begin{array}{rc}
\text { Answer - }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} & (0.25) \times(0.0500)=\left(C_{\text {dil }}\right) \times(0.150) \\
{\left[\mathrm{Ag}^{+}\right]_{\text {dil }}=0.83 \mathrm{M}} & \\
C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} & (0.10) \times(0.100)=\left(C_{\text {dil }}\right) \times(0.150) \\
{\left[\mathrm{NO}_{3}^{-}\right]_{\text {dil }}=0.67 \mathrm{M}} &
\end{array}
$$

c.) 55.0 mL of $0.185 \mathrm{M} \mathrm{MgCl}_{2}$ is mixed with 25.0 mL of $4.8 \times 10^{-2} \mathrm{M} \mathrm{CaBr}_{2}$.

$$
\begin{gathered}
\text { Answer }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.185)(0.0550)=\left(C_{\text {dil }}\right) \times(0.0750) \\
{\left[M g C l_{2}\right]_{\text {dil }}=0.136 \mathrm{M}} \\
C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \\
{\left[\mathrm{CaBr}_{2}\right]_{\text {dil }}=0.016 \mathrm{M}}
\end{gathered} \quad(0.048) \times(0.0250)=\left(C_{\text {dil }}\right) \times(0.0750)
$$

\[

\]

d.) 95.0 mL of $8.65 \times 10^{-4} \mathrm{M} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is mixed with 15.0 mL of $7.50 \times 10^{-6} \mathrm{M} \mathrm{Ag}_{2} \mathrm{SO}_{4}$.

$$
\begin{gathered}
\text { Answer }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad\left(8.65 \times 10^{-4}\right)(0.0950)=\left(C_{\text {dil }}\right) \times(0.110) \\
{\left[\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right]_{\text {dil }}=7.47 \times 10^{-4} \mathrm{M}} \\
C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad\left(7.50 \times 10^{-6}\right) \times(0.0150)=\left(C_{\text {dil }}\right) \times(0.110) \\
{\left[\mathrm{Ag}_{2} \mathrm{SO}_{4}\right]_{\text {dil }}=1.02 \times 10^{-6} \mathrm{M}} \\
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \leftrightarrow \mathrm{Al}^{+3}+3 \mathrm{NO}_{3}^{-} \\
7.47 \times 10^{-4} \mathrm{M} \quad 2.24 \times 10^{-3} \mathrm{M} \\
7.47 \times 10^{-4} \mathrm{M} \quad \mathrm{Ag}_{2} \mathrm{SO}_{4} \leftrightarrow 2 \mathrm{Ag}^{+2}+\mathrm{SO}_{4}{ }^{-2} \\
1.02 \times 10^{-6} \mathrm{M} \quad 2.05 \times 10^{-6} \mathrm{M} \quad 1.02 \times 10^{-6} \mathrm{M}
\end{gathered}
$$

e.) 25.0 mL of $0.360 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}$ is mixed with 75.0 mL of $0.160 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

$$
\begin{aligned}
& \text { Answer }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.360)(0.0250)=\left(C_{\text {dil }}\right) \times(0.100) \\
& {\left[\mathrm{NH}_{4} \mathrm{Br}\right]_{\text {dil }}=0.0900 \mathrm{M}} \\
& C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.160) \times(0.0750)=\left(C_{\text {dil }}\right) \times(0.100) \\
& {\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]_{\text {dil }}=0.120 \mathrm{M}} \\
& \mathrm{NH}_{4} \mathrm{Br} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Br}^{-} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \leftrightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}{ }^{-2} \\
& \begin{array}{llllll}
0.0900 M & 0.0900 M & 0.0900
\end{array} \text { M } \quad 0.120 M \quad 0.240 M \quad 0.120 M \\
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=0.0900+0.240 \quad\left[\mathrm{NH}_{4}{ }^{+}\right]=0.330 \mathrm{M}}
\end{aligned}
$$

f.) 10.0 mL of $0.100 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 40.0 mL of $0.300 \mathrm{M} \mathrm{AgNO}_{3}$.

$$
\begin{aligned}
& \text { Answer }-C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.100)(0.0100)=\left(C_{\text {dil }}\right) \times(0.0500) \\
& {\left[\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right]_{\text {dil }}=0.0200 \mathrm{M}} \\
& C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad(0.300) \times(0.0400)=\left(C_{\text {dil }}\right) \times(0.0500) \\
& {\left[\mathrm{AgNO}_{3}\right]_{\text {dil }}=0.240 \mathrm{M}} \\
& \mathrm{AgNO}_{3} \leftrightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}{ }^{-} \quad \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \leftrightarrow \mathrm{Ba}^{+}+2 \mathrm{NO}_{3}{ }^{-} \\
& \begin{array}{lllll}
0.240 M & 0.240 M & 0.240 M & 0.0200 M & 0.0200 M
\end{array} \quad 0.0400 M \\
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=0.0400+0.240 \quad\left[\mathrm{NH}_{4}{ }^{+}\right]=0.330 \mathrm{M}}
\end{aligned}
$$

13.) For each of the following combinations of equal volumes of 0.20 M aqueous solutions,
i.) Identify possible products by formula. red
ii.) State which (if any) product has a low solubility. (underlined)
iii.) If there is a precipitate write the formula equation, total ionic equation, and net ionic equation for the reaction.
a.) $\mathrm{MgS}_{(\mathrm{aq})}+\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})} \leftrightarrow \underline{\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{SrS}}$
$\mathrm{Mg}^{+2}{ }_{(\mathrm{aq})}+\mathrm{S}_{(\mathrm{aq})}^{-2}+\mathrm{Sr}_{(\mathrm{aq})}^{+2}+2 \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{Sr}_{(\mathrm{aq})}^{+2}+\mathrm{S}_{(\mathrm{aq})}$
$\mathrm{Mg}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}$
b.) $\mathrm{CuBr}_{2(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \leftrightarrow \underline{\mathrm{PbBr}_{2(\mathrm{~s})}}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$

$$
\begin{aligned}
& \mathrm{Cu}_{(\mathrm{aq})}^{+2}+2 \mathrm{Br}_{(\mathrm{aq})}^{-2}+\mathrm{Pb}_{(\mathrm{aq})}^{+2}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{(\mathrm{s})}+\mathrm{Cu}_{(\mathrm{aq})}^{+2}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{Pb}_{(\mathrm{aq})}^{+2}+2 \mathrm{Br}_{(\mathrm{aq})} \leftrightarrow \mathrm{PbBr}_{(\mathrm{s})}
\end{aligned}
$$

c.) $\mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{CuCl}_{2} \leftrightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+\mathrm{KCl}_{(\mathrm{qq)}}$
$3 \mathrm{~K}^{+}{ }_{(\mathrm{aq})}+\mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})}+\mathrm{Cu}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
$3 \mathrm{Cu}^{+2}{ }_{(\mathrm{aq})}+2 \mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \leftrightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$
d.) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \leftrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}(\mathrm{~s})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$2 \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{3}^{-2}{ }_{(\mathrm{aq})}+2 \mathrm{Al}_{(\mathrm{aq})}^{+3}+3 \mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3(\mathrm{~s})}+2 \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}$
$2 \mathrm{Al}^{+3}{ }_{(\mathrm{aq})}+3 \mathrm{SO}_{3}{ }^{-2}{ }_{(\mathrm{aq})} \leftrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3(\mathrm{~s})}$
e.) silver nitrate and sodium phosphate $\quad \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \leftrightarrow \underline{\mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s})}+\mathrm{NaNO}_{3}(\mathrm{aq})$ $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})}+3 \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}{ }_{(\mathrm{s})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})}$
$3 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \leftrightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
f.) zinc sulphate and iron (II) chloride $\quad \mathrm{ZnSO}_{4(\mathrm{aq})}+\mathrm{FeCl}_{2(\mathrm{aq})} \leftrightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{FeSO}_{4(\mathrm{aq})}$ $\mathrm{Zn}^{+2}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}+\mathrm{Fe}_{(\mathrm{aq})}^{+2}+2 \mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{Zn}^{+2}+\mathrm{SO}_{4}^{+2}{ }_{(\mathrm{aq})}+\mathrm{Fe}_{(\mathrm{aq})}^{+2}+2 \mathrm{Cl}_{(\mathrm{aq})}$
g.) beryllium sulphate and ammonium carbonate $\mathrm{BeSO}_{4(\mathrm{aq})}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{BeCO}_{3(\mathrm{~s})}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{Be}_{(\mathrm{aq})}^{+2}+\mathrm{SO}_{4}^{-2}(\mathrm{aq})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{-2}(\mathrm{aq}) \rightarrow \mathrm{BeCO}_{3}(\mathrm{~s})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \\
& \mathrm{Be}_{(\mathrm{aq})}^{+2}+\mathrm{CO}_{3}^{-2}(\mathrm{aq}) \leftrightarrow \mathrm{BeCO}_{3}(\mathrm{~s})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Mg}_{(\mathrm{aq})}^{+2}+\mathrm{SO}_{4}^{-2}(\mathrm{aq})+\mathrm{Sr}_{(\mathrm{aq})}^{+2}+2 \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{SrSO}_{4(\mathrm{~s})}+\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \\
& \mathrm{Mg}_{(\mathrm{aq})}^{+2}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} \leftrightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \\
& \mathrm{Sr}_{(\mathrm{aq})}^{+2}+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \leftrightarrow \mathrm{SrSO}_{4(\mathrm{~s})}
\end{aligned}
$$

14.) Solubility can be used in the field of Qualitative Analysis. This field of chemistry involves the use of experimental procedures to determine which elements or ions are present in a substance.

A solution contains Al^{+3} and Ag^{+}. What compounds could be added, and in what order, to separate these ions?

Answer - 1.) Add chloride, bromide, iodine, or sulphate ions to solution. All of these will precipitate out the silver ions.
2.) Add sulphide, hydroxide, phosphate, carbonate, or sulphite ions and aluminium will precipitate out.
15.) A solution contains $\mathrm{Fe}^{+3}, \mathrm{Ca}^{+2}, \mathrm{Ag}^{+}$, and Be^{+2}. What compounds could be added, and in what order, to separate out these ions?

3.) Add $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Sppt} \mathrm{Fe}^{+3}$.
4.) Add $\mathrm{Na}_{3} \mathrm{PO}_{4}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{Na}_{3} \mathrm{SO}_{3} \mathrm{pp}+\mathrm{Be}^{+2}$.

