Kinetic and Potential Energy

Determine whether the objects in the following problems have kinetic or potential energy. Then choose the correct formula to use:

$$KE = \frac{1}{2} mv^2$$

 $PE = mass \times gravitational\ acceleration\ (-9.81\frac{m}{s^2}) \times height\ OR\ PE = Weight \times Height$

$$Energy = I$$

$$Energy = J$$
 $Weight = N$

$$Mass = kg$$

$$Velocity = \frac{m}{s}$$

Gravitational acceleration =
$$(-9.81 \frac{m}{s^2})$$

1.) You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of $30.\frac{m}{s}$. The ball has <u>kinetic</u> energy. Calculate it.

Answer -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = \frac{1}{2}(2.1)(+30)^2$ $E_k = 945 J$

$$E_k = \frac{1}{2}(2.1)(+30)^2$$

$$E_k = 945 J$$

2.) A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 12 N. The carriage has ____Potential___ energy. Calculate it.

Answer -
$$E_p = mgh$$

Answer -
$$E_p = mgh$$
 $E_p = (\frac{12}{9.81})(-9.81)(21)$ $E_p = 252 J$

$$E_p = 252 J$$

3.) A car is traveling with a velocity of $40.\frac{m}{s}$ and has a mass of 1120~kg. The car has ___kinetic___ energy. Calculate it.

Answer -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = \frac{1}{2}(1120)(+40)^2$ $E_k = 896\ 000\ J$

$$E_k = \frac{1}{2}(1120)(+40)^2$$

$$E_{k} = 896\,000\,I$$

4.) A cinder block is sitting on a platform 20.m high. It weighs 79 N. The block has ____Potential___ energy. Calculate it.

Answer -
$$E_p = mgh$$

Answer -
$$E_p = mgh$$
 $E_p = (\frac{79}{9.81})(-9.81)(20)$ $E_p = 1580 J$

$$E_n = 1580$$

5.) There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N. The bell has ____Potential____ energy. Calculate it.

Answer -
$$E_p = mgh$$

Answer -
$$E_p = mgh$$
 $E_p = (\frac{190}{9.81})(-9.81)(45)$ $E_p = 8550 J$

$$E_p = 8\,550\,J$$

6.) A roller coaster is at the top of a 72 m hill and weighs 966 N. The coaster (at this moment) has ___Potential ___ energy. Calculate it.

Answer -
$$E_p = mgh$$
 $E_p = (\frac{966}{981})(-9.81)(72)$ $E_p = 69552 J$

7.) What is the kinetic energy of a 3.0 kg ball that is rolling at $2.0 \frac{m}{s}$?

Answer -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = \frac{1}{2}(3.0)(+2.0)^2$ $E_k = 6.0 J$

- 8.) Two objects were lifted by a machine. One object had a mass of 2.0~kg, and was lifted at a speed of $+2.0~\frac{m}{s}$. The other had a mass of 4.0~kg and was lifted at a speed of $+3.0~\frac{m}{s}$.
 - a. Which object had more kinetic energy while it was being lifted?

Answer -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = \frac{1}{2}(2.0)(2.0)^2$ $E_k = 4.0 J$

Answer - $E_k = \frac{1}{2}mv^2$ $E_k = \frac{1}{2}(4.0)(3.0)^2$ $E_k = 18 J$ <-- More

b. Which object had more potential energy when it was lifted to a distance of 10.m? Show your calculation.

Answer -
$$E_p = mgh$$
 $E_p = (2.0)(-9.81)(10.)$ $E_p = 192.20 J$ $E_p = mgh$ $E_p = (4.0)(-9.81)(10.)$ $E_p = 392.40 J$

9.) A 3.0 kg briefcase is dropped. If this briefcase reaches the floor at a speed of $3.2\frac{m}{s}$, from what height was it dropped?

Answer -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = \frac{1}{2}(3.0)(3.2)^2$ $E_k = 30.72 J$ $E_k = E_p'$ $30.72 = (3.0)(-9.81)h$ $h = 1.04 m$

10.) A water balloon $(0.250 \ kg)$ was dropped from the edge of a $8.0 \ m$ cliff. How fast was is moving as it hit the ground?

Answer -
$$E_p = mgh$$
 $E_p = (0.250)(-9.81)(8.0)$ $E_p = 19.63 J$ $E_p = E_k'$ $19.62 = (0.5)(0.250)v^2$ $v = 12.53 \frac{m}{s}$