Punnett Square Practice Worksheet

Part A: Vocabulary - Match the definitions on the left with the terms on the right.

_____ 1. genotypes made of the same alleles

A. alleles

_____ 2. different forms of genes for a single trait

B. dominant

____ 3. gene that is always expressed

- C. heterozygous
- _____ 4. gene that is expressed only in the homozygous state
- D. homozygous

_____ 5. genotypes made of two different alleles

E. recessive

Circle the choices that are examples of each of those words.

- 6. Homozygous dominant
- Gg
- KK mm
- uu
- Rr TT

7. Homozygous recessive

ee

AA

- Ff
- HH Oo
- 99

Dd

Gq

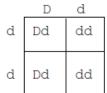
Uu ww

8. Genotypes in which dominant gene must show

- AA
- EE
- ff

Jϳ

rr


RR Ss

- 9. Genotypes in which recessive gene must show
- aa
- Ff
- KK
- Oo

T_t

<u>Part B</u> - **Punnett Squares**

10. Examine the following Punnett squares and circle those that are correct.

	D	D
d	Dd	DD
d	Dd	Dd

	Α	a
Α	AA	aa
а	Aa	Aa

	Α	a			
a	Aa	aa			
a	Aa	aa			

- 11. What do the letters on the outside of the Punnett square stand for?
- 12. What do the letters on the inside of the Punnett square stand for?

·	plants, normal h	•			•	·				•	
showing	different cross	ses. Then,	circle all d	of the hom	ozygou	s domin	ant off	spring	. Put an	X throu	gh all
the het	erozygous offsp	ring. Leave	e all the h	omozygous	recess	sive off	spring	unshad	ed.		
N	N	N	n		N	n			N	n	
n N	IN	N N	n	N	IN	n		n	IN	n	
							-			\perp	
n		N		n				n			
44 T :		c : 1					6 11				
_	a pigs, short hai			_	•			_		-	
accordir	ng to the direct	ions given.	Then, fill	in the bla	nks bes	ide eac	h Punne	ett squ	are witl	h the co	rrect
numbers	S.										
a. One g	guinea pig is Ss c	and one is	SS.								
Exp	ected number of	f offspring	g:								
	_ Short hair (S	S or Ss)				-		$\overline{}$			
	_ Long hair (ss)										
b. Both	guinea pigs are l	heterozygo	ous for sh	nort hair.							
Exp	ected number o	f offspring	3 :								
	_ Short hair										
	_ Long hair										
	-										
Part C: Mor	nohybrid Cross	Problems ·	- Make a 1	punnett sa	uare to	show v	our wor	·k.			
	s (H) in cattle is		·			•			nated w	uith a	
										,,,,,α	
ποπισεγί	gous horned cow	. wriai Wii	i be the g	ieno i ype ar	ia prieri	orype o	1111E 0	ı ı əhi.ii	19.5		
6											
Genotyp)e -										
Phenoty	pe -										

16. In tomatoes, red fruit (R) is dominant over yellow fruit (r). A plant that is homozygous for red fruit is crossed with a plant that has yellow fruit. What will be the genotype and phenotype of the offspring?					
Genotype -					
Phenotype -					
17. In humans, being a tongue roller (R) is dominant over non-roller (r). A man who is a non-roller marries a woman who is heterozygous for tongue rolling.					
Father's phenotype Mother's phenotype					
Father's genotype Mother's genotype					
What is the probability of this couple having a child who is a tongue roller?					
18. Brown eyes in humans are dominant to blue eyes. A brown-eyed man, whose mother was blue-marries a brown-eyed woman whose father had blue eyes.	eyed,				
What is the probability that this couple will have a blue-eyed child?					
Instructions - Answer the following questions by completing the punnett square.					
19. In pea plants, round (R) is dominant to wrinkled (r). A heterozygous female is crossed with a male. Make a Punnett Square to determine the possible offspring.	wrin	kled			
a. What are the possible genotypes of the offspring?					
b. What are the possible phenotypes of the offspring?					
c. What is the probability of having an offspring that is round?					
d. What is the probability of having an offspring that is homozygous?		1			

20.	O. The color of flowers in snap dragons shows incomplete dominance. Red ($\mathcal{C}^R\mathcal{C}^R$) and white ($\mathcal{C}^W\mathcal{C}^W$) are						
	homozygous and pink (C^RC^W) is heterozygous.						
	e.	If a red snap dragon is crossed with a white snap dragon, what is th	ie phenot	type of the			
		offspring?					
	f. What are the possible genotypes of the offspring?						
	g.	A pink flower is crossed with a red flower. Make a Punnett Square	to deter	mine the po	ssible		
		offspring.					
	h.	What is the probability of the offspring being red?					
	i.	What is the probability of the offspring being white?					
	j.	What is the probability of the offspring being pink?					
21.	Sickle	Cell Anemia is condition that shows codominance. The genotype for r	normal bl	ood cells is	NN.		
	Sickle	cell trait is the heterozygous condition (NS) and contains both norm	al and sid	kle shaped	blood		
	cells.	Sickle cell disease (SS) is when all of the blood cells are sickle-shape	ed and ha	s lifelong n	nedical		
	implications. A man with sickle cell trait has a child with a woman with sickle cell trait.						
k.	Compl	ete the Punnett Square.					
I.	What	is the probability of having a child with sickle cell trait?					
m.	What	s the probability of having a normal offspring?					
n.	What	s the probability of having a child with sickle cell disease?					
22.	A man	with Type O blood marries a woman with heterozygous Type A blood.					
ο.	What	are the possible genotypes of the offspring?]		
p.	What	are the possible phenotypes of the offspring?					
q.	What	s the probability of each genotype?					
r.	What	s the probability of each phenotype?					
					_		

23. In humans colorblindness (b) is an example of a sex-linked recessive trait. In this problem, a male with					
colorblindness marries a female who is not colorblind but carries the (b) allele. Using a Punnett square,					
determine the genotypic and phenotypic probabilities for their potential offspring.					
Genotype of offspring:					
Phenotype of offspring:					

24. A man that has an AB blood type has a child with a woman with type B blood. Can they have a type O child? Use a punnett square or punnett squares to show your work.