Concepts -

- I.) What is the difference between the path of Type 1 and Type 2 projectiles?
- II.) Explain why $ec{v}_{o_{Y}}$ is zero for Type 1 projectiles.
- III.) Explain why ax is zero for all projectiles?
- IV.) After drawing the picture what should be the first step in solving a Type 2 projectile?
- V.) What formula is used to find time for all projectiles?
- VI.) What conditions are necessary to use the horizontal components to find time for a Type 1 projectile?
- VII.) What is the relation between \vec{v}_{o_x} and \vec{v}_{f_x} , explain why this is.
- VIII.) How are \vec{v}_{f_v} and \vec{v}_{f_x} used to find the final velocity of any object?
- IX.) When should $v_f^2 = v_o^2 + 2ad$ be used and when should $\vec{v}_f = \vec{v}_o + \vec{a}t$ be used to find the final vertical velocity?

Problems -

- 1.) A physics student runs at $6.0 \frac{m}{s}$ horizontally off a 10.0 m high diving board. What will be her range when landing in the water below?
- 2.) A rock is tossed off a bridge horizontally at $9.0 \frac{m}{s}$ and strikes the ground below 3.2 s later. How high is the bridge and what was the range of the throw?
- 3.) A rifle is shot horizontally at $300\frac{m}{s}$ from a height of 1.8 m. What is the maximum distance the bullet will travel before hitting the ground?
- 4.) Water sprays horizontally out of a shower head which is 2.12 m above the ground. If the water hits the shower floor 0.85 m from the wall of the shower how fast was the water coming out the showerhead?
- 5.) A supply plane flying at $250 \frac{m}{s}$ releases supplies 3900 m in front of survivors of a shipwreck. How high is the plane?
- 6.) An Olympic javelin thrower releases the javelin at $30\frac{m}{s}$ at an angle of 40° above the horizontal. What is the range of the projectile?
- 7.) While skateboarding, a student leaves a jump at 20° and velocity $5.0 \frac{m}{s}$, what will be the range of his jump?
- 8.) A football kickoff is moving with an initial velocity of $20\frac{m}{s}$ at 58° above the field, what is the range of the kick?

- 9.) A small electric current zaps a frog causing it to jump at $2.0\frac{m}{s}$ on an angle of 30° , if the frog was in the middle of a $30 \text{ } cm \times 30 \text{ } cm$ plate of copper will it get off the copper in one jump?
- 10.) While studying a kangaroo at a distance a scientist notes the kangaroo consistently jumps on an angle of 35° . Careful measurements show the range of all jumps to be 4.0 m, with what was the velocity the kangaroo leaving the ground?
- 11.) Calculate velocity when reaching the water of the student in #1.
- 12.) What is the velocity of the bullet in #3 when it has dropped a vertical distance of 1.0 m?
- 13.) For the football in #8 what is the velocity at the maximum height?
- 14.) What is the maximum height of the football in #8?
- 15.) Calculate the velocity of the kangaroo in #10 after 0.30 s.

Answers -

II.) because the projectile is launched horizontally.

III.) zero.

IV.) find \vec{v}_{o_x} and $\vec{v}_{o_{y}}$.

V.)
$$\vec{d} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$
.

VI.) must be given \vec{v}_{o_x} and \vec{d}_x .

VII.) they are the same because there is no acceleration in the x direction.

VIII.) Pythagoras' theorem.

IX.) use $\vec{v}_f^2 = \vec{v}_o^2 + 2\vec{a}\vec{d}$ when given dy, use $\vec{v}_f = \vec{v}_o + \vec{a}t$ when given time.

1.) $\vec{d}_x = 8.57 \ m$	2.) $\vec{d}_y = 50.2 m$, $\vec{d}_x = 28.8 m$	3.) $\vec{d}_x = 182 m$
4.) $1.29\frac{m}{s}$	5.) $\vec{d}_y = 1.19 \times 10^3 m$	6.) $\vec{d}_x = 90.4 \ m$
7.) $\vec{d}_x = 1.64 m$	8.) $\vec{d}_x = 36.7 m$	9.) yes
10.) $6.46 \frac{m}{s}$	11.) $\vec{v}_f = 15.3 \frac{m}{s}$	12.) $\vec{v}_f = 300 \frac{m}{s} (still)$
13.) $\vec{v}_f = +10.6 \frac{m}{s}$	14.) $\vec{d}_y = +14.7 \ m$	15.) 5.35 $\frac{m}{s}$