Projectiles, More Practice

Concepts -

I.) What is the difference between the path of Type 1 and Type 2 projectiles?
II.) Explain why $\vec{v}_{o_{y}}$ is zero for Type 1 projectiles.
III.) Explain why a_{x} is zero for all projectiles?
IV.) After drawing the picture what should be the first step in solving a Type 2 projectile?
V.) What formula is used to find time for all projectiles?
VI.) What conditions are necessary to use the horizontal components to find time for a Type 1 projectile?
VII.) What is the relation between $\vec{v}_{o_{x}}$ and $\vec{v}_{f_{x}}$, explain why this is.
VIII.) How are $\vec{v}_{f_{y}}$ and $\vec{v}_{f_{x}}$ used to find the final velocity of any object?
IX.) When should $v_{f}^{2}=v_{o}^{2}+2 a d$ be used and when should $\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$ be used to find the final vertical velocity?

Problems -

1.) A physics student runs at $6.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ horizontally off a 10.0 m high diving board. What will be her range when landing in the water below?
2.) A rock is tossed off a bridge horizontally at $9.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ and strikes the ground below 3.2 s later. How high is the bridge and what was the range of the throw?
3.) A rifle is shot horizontally at $300 \frac{\mathrm{~m}}{\mathrm{~s}}$ from a height of 1.8 m . What is the maximum distance the bullet will travel before hitting the ground?
4.) Water sprays horizontally out of a shower head which is 2.12 m above the ground. If the water hits the shower floor 0.85 m from the wall of the shower how fast was the water coming out the showerhead?
5.) A supply plane flying at $250 \frac{\mathrm{~m}}{\mathrm{~s}}$ releases supplies 3900 m in front of survivors of a shipwreck. How high is the plane?
6.) An Olympic javelin thrower releases the javelin at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ at an angle of 40° above the horizontal. What is the range of the projectile?
7.) While skateboarding, a student leaves a jump at 20° and velocity $5.0 \frac{\mathrm{~m}}{\mathrm{~s}}$, what will be the range of his jump?
8.) A football kickoff is moving with an initial velocity of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ at 58° above the field, what is the range of the kick?
9.) A small electric current zaps a frog causing it to jump at $2.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ on an angle of 30°, if the frog was in the middle of a $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ plate of copper will it get off the copper in one jump?
10.) While studying a kangaroo at a distance a scientist notes the kangaroo consistently jumps on an angle of 35°. Careful measurements show the range of all jumps to be 4.0 m , with what was the velocity the kangaroo leaving the ground?
11.) Calculate velocity when reaching the water of the student in \#1.
12.) What is the velocity of the bullet in \#3 when it has dropped a vertical distance of 1.0 m ?
13.) For the football in $\# 8$ what is the velocity at the maximum height?
14.) What is the maximum height of the football in \#8?
15.) Calculate the velocity of the kangaroo in \#10 after 0.30 s .

Answers -

I.) Type 1

Type 2

II.) because the projectile is launched horizontally.
III.) zero.
IV.) find $\vec{v}_{o_{x}}$ and $\vec{v}_{o_{y}}$.
V.) $\vec{d}=\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2}$.
VI.) must be given $\vec{v}_{o_{x}}$ and \vec{d}_{x}.
VII.) they are the same because there is no acceleration in the x direction.
VIII.) Pythagoras' theorem.
IX.) use $\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d}$ when given dy, use $\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$ when given time.
1.) $\vec{d}_{x}=8.57 \mathrm{~m}$
2.) $\vec{d}_{y}=50.2 \mathrm{~m}, \vec{d}_{x}=28.8 \mathrm{~m}$
3.) $\vec{d}_{x}=182 m$
4.) $1.29 \frac{\mathrm{~m}}{\mathrm{~s}}$
5.) $\vec{d}_{y}=1.19 \times 10^{3} \mathrm{~m}$
6.) $\vec{d}_{x}=90.4 \mathrm{~m}$
7.) $\vec{d}_{x}=1.64 \mathrm{~m}$
8.) $\vec{d}_{x}=36.7 \mathrm{~m}$
9.) yes
10.) $6.46 \frac{\mathrm{~m}}{\mathrm{~s}}$
11.) $\vec{v}_{f}=15.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
12.) $\vec{v}_{f}=300 \frac{\mathrm{~m}}{\mathrm{~s}}$ (still)
13.) $\vec{v}_{f}=+10.6 \frac{\mathrm{~m}}{\mathrm{~s}}$
14.) $\vec{d}_{y}=+14.7 \mathrm{~m}$
15.) $5.35 \frac{\mathrm{~m}}{\mathrm{~s}}$

