1.) A cliff diver is on a 30.0 m high cliff. With what velocity should they leave the cliff, (assume the person jumps out horizontally) in order to miss 8.0 m of rock coming from the cliff's base? Solve for time first. Solve for displacement second. $\vec{v}_x = +3.2 \frac{m}{c}$

2.) A mountain goat butts you off a 50.0 m high cliff with a horizontal velocity of $+3.0 \frac{m}{s}$. How far from the base will you strike the ground? Solve for time first. Solve for displacement second. $\vec{d}_x = +9.6 m$

3.) A golfer strikes a ball giving it a velocity of $+35\frac{m}{s}$ at 35° . If the course is completely flat how far will the ball travel before bouncing? Solve for time first. Solve for displacement second. $\vec{d}_x = +1.2 \times 10^2 m$

4.) Use the information in #3 to find the maximum height to which the ball will rise.

Solve using $\vec{d}_y = \vec{v}_{oy}t + \frac{1}{2}\vec{a}t^2$ but with only half time as this is the highest point. $\vec{d}_y = +21 m$

<u>KEY</u>

5.) A cat leaps off a building (the crowd goes wild with applause) of height 30.0 m. If it left the building with a horizontal velocity of $+1.0 \frac{m}{s}$ will it land safely on some garbage bags 5.0 m from the base of the building?

Solve for time first and use that to solve for the distance the cat travels. No the cat doesn't make it as $\vec{d}_x = +2.47 m$

6.) What will be the vertical velocity of the cat above at the exact moment of impact?

Solve for velocity using $\vec{v}_{fy}^2 = \vec{v}_{oy}^2 + 2ad$ $\vec{v}_{fy} = -24.2 \frac{m}{s}$

7.) A baseball is hit at $30.0 \frac{m}{s}$ on an angle of 40° , what is its maximum height? Solve for the time in the air. Use half the time as we only want flight time to the top and use $\vec{d}_y = \vec{v}_{oy}t + \frac{1}{2}\vec{a}t^2$ $\vec{d}_y = +19.0 m$

8.) A stunt person jumps at $5.0 \frac{m}{s}$ horizontally, if she just lands on an airbag 24.2 m from the base of a building how high was the building? Solve for time using horizontal formula. $\vec{d}_y = 115 m$

Bonus - A kid throws a rock on a 45° angle with velocity $\pm 10.0 \frac{m}{s}$ off a 10.0 m high cliff. How far from the base of the cliff will the rock land? Solve using the quadratic equation. Answer - Solve for time. $\vec{d}_y = \vec{v}_{oy}t + \frac{1}{2}\vec{a}t^2$ $-10 = (\pm 7.07)t + (0.5)(-9.81)t^2$ Use quadratic equation. $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $t = \frac{-7.07 \pm \sqrt{7.07^2 - 4(-4.905)(\pm 10)}}{2(-4.905)}$ t = 2.32 s $\vec{v}_x = \frac{\Delta \vec{d}_x}{\Delta t}$ $7.07 = \frac{\Delta \vec{d}_x}{2.32}$ $\vec{d}_x = 16.4024 m$ $\vec{d}_x = 16.4 m$