## Gravity Practice - Version 2

1.) A cliff diver is on a 30.0 m high cliff. With what velocity should they leave the cliff, (assume the person jumps out horizontally) in order to miss 8.0 m of rock coming from the cliff's base?
Solve for time first. Solve for displacement second.

$$
\vec{v}_{x}=+3.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2.) A mountain goat butts you off a 50.0 m high cliff with a horizontal velocity of $+3.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. How far from the base will you strike the ground?
Solve for time first. Solve for displacement second. $\quad \vec{d}_{x}=+9.6 \mathrm{~m}$
3.) A golfer strikes a ball giving it a velocity of $+35 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $35^{\circ}$. If the course is completely flat how far will the ball travel before bouncing?

Solve for time first. Solve for displacement second.

$$
\vec{d}_{x}=+1.2 \times 10^{2} \mathrm{~m}
$$

4.) Use the information in \#3 to find the maximum height to which the ball will rise.

Solve using $\vec{d}_{y}=\vec{v}_{o y} t+\frac{1}{2} \vec{a} t^{2}$ but with only half time as this is the highest point. $\vec{d}_{y}=+21 \mathrm{~m}$
5.) A cat leaps off a building (the crowd goes wild with applause) of height 30.0 m . If it left the building with a horizontal velocity of $+1.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ will it land safely on some garbage bags 5.0 m from the base of the building?

Solve for time first and use that to solve for the distance the cat travels.
No the cat doesn't make it as $\vec{d}_{x}=+2.47 \mathrm{~m}$
6.) What will be the vertical velocity of the cat above at the exact moment of impact?

Solve for velocity using $\quad \vec{v}_{f y}{ }^{2}=\vec{v}_{o y}{ }^{2}+2 a d \quad \vec{v}_{f y}=-24.2 \frac{\mathrm{~m}}{\mathrm{~s}}$
7.) A baseball is hit at $30.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ on an angle of $40^{\circ}$, what is its maximum height?

Solve for the time in the air. Use half the time as we only want flight time to the top and use

$$
\vec{d}_{y}=\vec{v}_{o y} t+\frac{1}{2} \vec{a} t^{2} \quad \vec{d}_{y}=+19.0 m
$$

8.) A stunt person jumps at $5.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ horizontally, if she just lands on an airbag 24.2 m from the base of a building how high was the building?

Solve for time using horizontal formula. $\quad \vec{d}_{y}=115 \mathrm{~m}$

Bonus - A kid throws a rock on a $45^{\circ}$ angle with velocity $+10.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ off a 10.0 m high cliff. How far from the base of the cliff will the rock land? Solve using the quadratic equation.
$\begin{array}{lll}\text { Answer - Solve for time. } & \vec{d}_{y}=\vec{v}_{o_{y}} t+\frac{1}{2} \vec{a} t^{2} & -10=(+7.07) t+(0.5)(-9.81) t^{2} \\ \text { Use quadratic equation. } & t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & t=\frac{-7.07 \pm \sqrt{7.07^{2}-4(-4.905)(+10)}}{2(-4.905)} \quad t=2.32 \mathrm{~s}\end{array}$

$$
\vec{v}_{x}=\frac{\Delta \vec{a}_{x}}{\Delta t} \quad 7.07=\frac{\Delta \vec{d}_{x}}{2.32} \quad \vec{d}_{x}=16.4024 \mathrm{~m} \quad \vec{d}_{x}=16.4 \mathrm{~m}
$$

