Gravity Practice - Version 1

1.) A cliff diver is on a 30.0 m high cliff. With what velocity should they leave the cliff, (assume the person jumps out horizontally) in order to miss 8.0 m of rock coming from the cliff's base?

Solve for time first. Solve for displacement second.

$$
\vec{v}_{x}=+3.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2.) A mountain goat butts you off a 50.0 m high cliff with a horizontal velocity of $+3.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. How far from the base will you strike the ground?

Solve for time first. Solve for displacement second.

$$
\vec{d}_{x}=+9.6 \mathrm{~m}
$$

3.) A golfer strikes a ball giving it a velocity of $+35 \frac{\mathrm{~m}}{\mathrm{~s}}$ at 35°. If the course is completely flat how far will the ball travel before bouncing?

Solve for time first. Solve for displacement second.

$$
\vec{d}_{x}=+1.2 \times 10^{2} \mathrm{~m}
$$

4.) Use the information in \#3 to find the maximum height to which the ball will rise.

Solve using $\vec{d}=\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2}$ but with only half time as this is the highest point. $\quad \vec{d}_{y}=+21 \mathrm{~m}$
5.) Two stars of a 'binary system' are $2.00 \times 10^{12} \mathrm{~m}$ apart, find the force of attraction between the stars if one has mass $2.0 \times 10^{30} \mathrm{~kg}$ and the other $6.0 \times 10^{31} \mathrm{~kg}$.
Answer - $\quad \vec{F}_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
$\vec{F}_{g}=\frac{6.67 \times 10^{-11}\left(2.0 \times 10^{30}\right)\left(6.0 \times 10^{31}\right)}{\left(2.00 \times 10^{12}\right)^{2}}$
$\vec{F}_{g}=2.001 \times 10^{27} \mathrm{~N}$

$$
\vec{F}_{g}=2.0 \times 10^{27} \mathrm{~N}
$$

6.) Two masses are attracted by a gravitational force of 15 N . If they are identical mass and are 12 m apart find the mass of each.
Answer - $\quad \vec{F}_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
$15=\frac{6.67 \times 10^{-11}(\mathrm{~m})^{2}}{12^{2}}$ $m^{2}=3.2383808 \times 10^{13} \mathrm{~kg}$ $m=5.7 \times 10^{6} \mathrm{~kg}$
7.) A physics 11 student is blasted into orbit to a distance of 3 earth radii from the centre of the planet. What gravitational field strength would the student measure here?
Answer - The inverse square law applies. So ... $\vec{F}_{g}=9.81 \times\left(\frac{1}{3}\right)^{2}=1.09 \mathrm{~N} \quad \vec{F}_{g}=1.09 \mathrm{~N}$
8.) The moon has a radius of $1.74 \times 10^{6} \mathrm{~m}$ and mass $7.35 \times 10^{22} \mathrm{~kg}$. What would be the force of gravity on a 10.0 kg mass on the moon's surface?

Answer - $\quad \vec{F}_{g}=\frac{G m_{1} m_{2}}{r^{2}} \quad \vec{F}_{g}=\frac{6.67 \times 10^{-11}\left(7.35 \times 10^{22}\right)(10.0)}{\left(1.74 \times 10^{6}\right)^{2}} \quad \vec{F}_{g}=16.1925 \mathrm{~N}$

$$
\vec{F}_{g}=16.2 \mathrm{~N}
$$

Bonus - A kid throws a rock on a 45° angle with velocity $+10.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ off a 10.0 m high cliff. How far from the base of the cliff will the rock land?

$$
\begin{array}{lll}
\text { Answer - Solve for time. } & \vec{d}_{y}=\vec{v}_{o_{y}} t+\frac{1}{2} \vec{a} t^{2} & -10=(+7.07) t+(0.5)(-9.81) t^{2} \\
\text { Use quadratic equation. } & t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & t=\frac{-7.07 \pm \sqrt{7.07^{2}-4(-4.905)(+10)}}{2(-4.905)} \quad t=2.32 \mathrm{~s}
\end{array}
$$

$$
\vec{v}_{x}=\frac{\Delta \vec{a}_{x}}{\Delta t} \quad 7.07=\frac{\Delta \vec{a}_{x}}{2.32} \quad \vec{d}_{x}=16.4024 m \quad \vec{d}_{x}=16.4 m
$$

