Gravity Practise - Version 1

1.) A cliff diver is on a 30.0 m high cliff. With what velocity should they leave the cliff, (assume the person jumps out horizontally) in order to miss 8.0 m of rock coming from the cliff's base?
2.) A mountain goat butts you off a 50.0 m high cliff with a horizontal velocity of 3.0 m/s. How far from the base will you strike the ground?
3.) A golfer strikes a ball giving it a velocity of 35 m/s at 35°. If the course is completely flat how far wi the ball travel before bouncing?
4.) Use the information in #3 to find the maximum height to which the ball will rise.
5.) Two stars of a 'binary system' are 2.00×10^{12} m apart, find the force of attraction between the stars in one has mass 2.0×10^{30} kg and the other 6.0×10^{31} kg.

6.) Two masses are attracted by a gravitational force of 15 N. If they are identical mass and are 12 m apart find the mass of each.
7.) A physics 11 student is blasted into orbit to a distance of 3 earth radii from the centre of the planet. What gravitational field strength would the student measure here?
8.) The moon has a radius of 1.74×10^6 m and mass 7.35×10^{22} kg. What would be the force of gravity on a 10.0 kg mass on the moon's surface?
Bonus - A kid throws a rock on a 45° angle with velocity 10.0 m/s off a 10.0 m high cliff. How far from the base of the cliff will the rock land?