Work and Power

1.) A man pushes a wheelbarrow forward at a constant speed over level ground by exerting a steady force of $120 . N$.
a.) How much work does he do in moving the wheelbarrow 8.0 m ?

$$
\text { Answer }-W=\vec{F} d \quad W=(+120)(8.0) \quad W=960 I
$$

b.) How much work is done by friction while the wheelbarrow moves 8.0 m ?

$$
\text { Answer }-W=\vec{F} d \quad W=(-120)(8.0) \quad W=960 J
$$

c.) The man continues to exert 120.N, but the wheelbarrow hits a patch of soft soil and slows down for 6.0 m . How much work does he do during this time?

$$
\text { Answer }-W=\vec{F} d \quad W=(+120)(6.0) \quad \underline{W} \quad \underline{720} \mathrm{I}
$$

d.) The man continues to push with $120 . N$, but the wheel barrow hits a rock and stops. How work is done while the wheelbarrow is stuck?

Answer-zero. Wheelbarrow is not moving.
e.) While pushing the wheelbarrow the man's partner drops a 20.0 kg bag of cement into the wheelbarrow. How much work is done over the next 2.0 m ?

$$
\text { Answer }-W=\vec{F} d \quad W=(+120)(2.0) \quad W=240 J
$$

f.) How much work is done by gravity on the bag of cement, as the man pushes the wheelbarrow 5.0 m ? Answer - zero. Wheelbarrow is moving in different direction than gravity. Since the cement bag is not moving up or down, gravity is doing no work.
2.) A car of mass $1.0 \times 10^{3} \mathrm{~kg}$ is travelling at a constant speed of 50 . $\frac{\mathrm{km}}{\mathrm{h}}$. The force of friction on the car is 500 N . The engine force increases to $750 . \mathrm{N}$ so that the car accelerates for 6.0 s .
a.) How much work is done by the engine in the 6.0 s ?

$$
\begin{array}{ccc}
\text { Answer - } \vec{F}=m \vec{a} & +250=(1000) \vec{a} & \vec{a}=+0.25 \frac{\mathrm{~m}}{s^{2}} \\
\hline \vec{d}=\vec{v}_{o} t+0.5 \vec{a} t^{2} & \vec{d}=(+13.88)(6.0)+0.5(+0.25)(6.0)^{2} \quad \vec{d}=+87.78 \mathrm{~m} \\
W=\vec{F} d & W=(+750)(87.78) & W=6.6 \times 10^{4} \mathrm{~J}
\end{array}
$$

b.) How much work is done by the force of friction during the same 6.0 s ?
Answer - $W=\vec{F} d$
$W=(+500)(87.78)$
$W=4.39 \times 10^{4} J$
3.) An object of mass 2.0 kg falls to the floor from an 80.0 cm high table. How much work is done by the force of gravity?

Answer $-W=\vec{F} d \quad W=(2.0)(-9.81))(0.80) \quad W=15.7 J$
4.) Engine A can lift 50.0 kg a distance of 12 m in 15 s . Engine B can lift 110 kg a distance of 12 m in 35 s .
a.) Which engine can exert the greater force?

$$
\begin{aligned}
& \text { Answer - } \vec{d}=\vec{v}_{0} t+0.5 \vec{a} t^{2} \quad 12=0.5(\vec{a})(15)^{2} \quad \vec{a}=+0.106666 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \vec{F}_{n e t}=m \vec{a} \quad \vec{F}_{n e t}=(50.0)(0.106666) \quad \vec{F}_{n e t}=+5.33 \mathrm{~N} \\
& \vec{W}=m \vec{g} \quad \vec{W}=50(-9.81) \quad \vec{W}=-491 N \quad \overrightarrow{F_{a}}=491+5.33 \quad \vec{F}=496 \mathrm{~N} \\
& \vec{d}=\vec{v}_{0} t+0.5 \vec{a} t^{2} \quad 12=0.5(\vec{a})(35)^{2} \quad \vec{a}=+0.019592 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \vec{F}_{B}=m \vec{a} \quad \vec{F}_{B}=(110)(+0.0195912) \quad \vec{F}_{B}=+2.16 \mathrm{~N} \\
& \vec{W}=m \vec{g} \quad \vec{W}=110(-9.81) \quad \vec{W}=-1079.1 N \quad \overrightarrow{F_{a}}=1079+2.16 \quad \overrightarrow{\vec{F}}=1082 N
\end{aligned}
$$

b.) Which engine is more powerful?

$$
\begin{array}{ccccc}
\text { Answer - } & W_{A}=\vec{F} d & W_{A}=(5.33)(12) & W_{A}=63.96 \mathrm{~J} \\
& W_{B}=\vec{F} d \quad W_{B}=(2.16)(12) & W_{B}=25.92 \mathrm{~J} \\
P_{A}=\frac{W}{t} & P_{A}=\frac{63.96}{15} & \underline{P_{A}}=4.3 \mathrm{~W} & P_{B}=\frac{W}{t} \quad P_{B}=\frac{25.92}{35} & \underline{P}_{B}=0.74 \mathrm{~W} \\
\hline
\end{array}
$$

5.) What is the average power of a car engine that can accelerate a car of mass 1250 kg from rest to 80. $\frac{\mathrm{km}}{\mathrm{h}}$ in 10.0 s when the force of friction on the car is 725 N ?

$$
\begin{array}{llll}
\text { Answer - } & \vec{v}_{f}=\vec{v}_{o}+\vec{a} t & +22.22=0+\vec{a}(10.0) & \vec{a}=+2.222 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\vec{v}_{f}{ }^{2}=\vec{v}_{o}{ }^{2}+2 \vec{a} \vec{d} & (+22.22)^{2}=0^{2}+2(+2.22) \vec{d} & \vec{d}=+111.222 \mathrm{~m} \\
\vec{F}_{\text {net }}=m \vec{a} & \vec{F}_{\text {net }}=(1250)(+2.22) & \vec{F}=+2777.778 \mathrm{~N} & \\
W=\vec{F} d & W=((+2777.778)+(725)(+111.222) & W=3.8959 \times 10^{5} \mathrm{~J} \\
P=\frac{W}{t} & P=\frac{\vec{F} d}{t} & P=\frac{(725+2777.78)(111.222)}{10.0} & P=3.90 \times 10^{4} \mathrm{~W}
\end{array}
$$

6.) If a 10. N force is needed to just keep a 1.6 kg object from moving across a floor at a steady speed, how much work is done in moving it 3.2 m ?
Answer -
$W=\vec{F} d$
$W=(+10)(3.2)$
$W=32 I$
c.) 720 J
d.) 0
e.) 240 J
f.) 0

2a.) $6.58 \times 10^{4} \mathrm{~J}$
$\begin{array}{ll}\text { b.) } 4.39 \times 10^{4} \mathrm{~J} & \text { 3.) } 15.7 \mathrm{~J}\end{array}$
4a.) engine $A=496 \mathrm{~N}$, engine $B=1.08 \times 10^{3} \mathrm{~N}$

