Work and Power

1.) A man pushes a wheelbarrow forward at a constant speed over level ground by exerting a steady force of +120 . N.
a.) How much work does he do in moving the wheelbarrow 8.0 m ?
b.) How much work is done by friction while the wheelbarrow moves 8.0 m ?
c.) The man continues to exert $+120 . N$, but the wheelbarrow hits a patch of soft soil and slows down for 6.0 m . How much work does he do during this time?
d.) The man continues to push with $+120 . N$, but the wheel barrow hits a rock and stops. How work is done while the wheelbarrow is stuck?
e.) While pushing the wheelbarrow the man's partner drops a 20.0 kg bag of cement into the wheelbarrow. How much work is done over the next 2.0 m ?
f.) How much work is done by gravity on the bag of cement, as the man pushes the wheelbarrow 5.0 m ?
2.) A car of mass $1.0 \times 10^{3} \mathrm{~kg}$ is travelling at a constant speed of 50 . $\frac{\mathrm{km}}{\mathrm{h}}$. The force of friction on the car is 500. N. The engine force increases to $750 . \mathrm{N}$ so that the car accelerates for 6.0 s .
a.) How much work is done by the engine in the $6.0 s$?
b.) How much work is done by the force of friction during the same $6.0 s$?
3.) An object of mass 2.0 kg falls to the floor from an 80.0 cm high table. How much work is done by the force of gravity?
4.) Engine A can lift 50.0 kg a distance of 12 m in 15 s . Engine B can lift 110 kg a distance of 12 m in 35 s .
a.) Which engine can exert the greater force?
b.) Which engine is more powerful?
5.) What is the average power of a car engine that can accelerate a car of mass 1250 kg from rest to $80 . \frac{\mathrm{km}}{\mathrm{h}}$ in 10.0 s when the force of friction on the car is 725 N ?
6.) If a $10 . \mathrm{N}$ force is needed to just keep a 1.6 kg object from moving across a floor at a steady speed, how much work is done in moving it 3.2 m ?

Answers - 1a.) 960 J
b.) 960 J
c.) 720 J
d.) 0 J
e.) 240 J
f.) 0 J

2a.) $6.6 \times 10^{4} \mathrm{~J}$
b.) $4.39 \times 10^{4} \mathrm{~J}$
3.) 15.7 J

4a.) engine $A=496 \mathrm{~N}$, engine $B=1080 \mathrm{~J}$
b.) engine $A=4.3 \mathrm{~W}$, engine $B=0.74 \mathrm{~W}$
$\begin{array}{ll}\text { 5.) } 3.89 \times 10^{5} \mathrm{~W} & \text { 6.) } 32 \mathrm{~J}\end{array}$

