Radioactivity Review

- 1.) Radiation is the process of a nucleus breaking down by releasing particles or energy.
- 2.) a.) Three kinds of radioactive decay are alpha, beta, and gamma decay.
 - b.) Alpha decay produces a helium nucleus, beta decay produces an electron, and gamma decay produces high energy rays.
 - c.) The electric charge of these three decays is alpha = positive, beta = negative and gamma equals neither (neutral).
- 3.) Alpha particles can be represented by the Greek letter alpha (α) or ${}_{2}^{4}He$.
- 4.) a.) The atoms of magnesium 24 and magnesium 26 are similar in that they both have 12 protons and electrons.
 - b.) Magnesium 24 and magnesium 26 differ in the number of neutrons. magnesium 24 has 24 and magnesium 26 has 26.
- 5.) Protons are the subatomic particle that determines the identity of the element.
- 6.) In an alpha particle both protons and neutrons are present.
- 7.) Beta particles have a negative charge as they are an electron ejected from the nucleus and electrons are negatively charged.
- 8.) The release of an alpha particle changes the element by reducing the protons and neutrons by 2 each.
- 9.) a.) 128 g undergoing two half-lives would have 32 g remaining. $128 * \frac{1}{2} * \frac{1}{2} = 32 g$
 - b.) 128 g undergoing four half-lives would have 8 g remaining. 128 * $\frac{1}{2}$ * $\frac{1}{2}$ * $\frac{1}{2}$ * $\frac{1}{2}$ = 8 g
- 10.) A nuclear reaction differs from a chemical reaction in
 - (a.) the amount of energy released (lots in nuclear little in regular reactions).
 - (b.) in regular reactions electrons are involved in the bonding but in nuclear it could be protons, neutrons, or electrons involved and they are not bonding but coming from the nucleus.
 - (c.) in regular reactions new products are formed when elements rearrange but in nuclear new elements are formed from the breakdown of the nucleus.

- 11.) Nuclear reactions can be induced by striking a nucleus with neutrons causing the nucleus to split.
- 12.) a.) $\frac{201}{81}Tl$
 - b.) $\frac{227}{89} Ac$
 - c.) $\frac{221}{87}$ Fr
 - d.) $\frac{60}{28}Ni$
 - e.) $\frac{234}{90}Th$
 - f.) $\frac{24}{12}Mg$
- 13.) a.) $\frac{50}{23}V$
 - b.) $\frac{40}{18} Ar$
 - c.) $\frac{3}{2}He^*$
 - d.) $\frac{32}{14}Si$
 - e.) $\frac{26}{13}Al$
 - f.) $\frac{36}{18}Ar$
 - g.) $\frac{29}{13}Al$
- 14.) a.) 50 μg (5730 is one half-life of carbon-14).
 - b.) $25 \,\mu g$ (two half-life).
 - c.) 12.5 μg (three half-life).
- 15.) a.) Decide whether each example is fission, fusion, or both.
 - a.) Electrical energy = fission
 - b.) Atomic weapons = both, but mainly fusion (since 1952)
 - c.) Radioactive daughter products = fission
 - d.) Happens at core of sun = fusion