Half-Life

1.) What is the ratio of carbon -14 to Nitrogen -14 after two half-lives have occurred?

Answer - After one half-life 50% will be left of the parent and 50% will have been made of the daughter atoms. After the second half-life, only 25% will be left of the parent and so 75% will have been made of the daughter atoms. So, the ratio is $25: 75$ for parent to daughter atoms or 1:3 if simplified.
2.) Sodium - 24 decays to produce magnesium - 24. A laboratory sample contains 400 atoms of sodium -24 . Use the decay curve below to answer the following questions:

a.) How many sodium - 24 atoms will be left after 30 hrs ?

100 atoms
b.) How many magnesium- 24 atoms will be present after 53 hrs ?

30 atoms of sodium-24 left would mean that there is now 400-30 $=370$ atoms of magnesium-24
c.) What is the half-life of sodium -24 ?

About 14.5 hours
d.) How many sodium - 24 atoms will be present after 75 hrs ?
3.) A radioactive isotope has a mass of 120 g . If the isotope had a half-life of 20 s , what would be the mass of the isotope after 2.0 min ?

If the half-life is $20 s$ then there will be 6 half-lives to reach 2 min .

$$
6^{\frac{1}{2}}=0.015625 \% \text { left } \quad 0.015625 \times 120=1.875 \mathrm{~g}
$$

4.) A granite rock is thought to be about 2 billion years old. Why can't we use carbon -14 dating to find out if this is correct?

Carbon-14 dating will not work for dating items that were never alive to build up carbon. As well after a billion years there will be too small amount of carbon-14 left to accurately weigh to get a proper date.
5.) An organic sample is 28650 years old. What percentage of the original carbon - 14 is still present in the sample?

The half-life of carbon-14 is 5730 years. $\frac{28650}{5730}=5$. There has been 5 half-lives. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ There is $\frac{1}{32}$ left or 0.03125 . This amount as a percent is 3.125%.

