## **Nuclear Chemistry**

1. Complete the following nuclear reactions

a. 
$$^{238}_{92}U \rightarrow _{---} + ^{4}_{2}He$$

c. \_\_\_\_ 
$$\rightarrow {}^{211}_{83}Bi + {}^{0}_{-1}e$$

e. 
$$^{40}_{19}K \rightarrow ^{40}_{20}Ca + _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}$$

g. 
$$^{210}_{83}Bi \rightarrow$$
\_\_\_\_\_ +  $\beta$ 

i. 
$$^{238}_{92}U + ^{14}_{7}N \rightarrow _{---} + 5^{1}_{0}n$$

k. 
$$^{238}_{92}U + ^{2}_{1}H \rightarrow _{---} + 2^{1}_{0}n$$

m. \_\_\_\_ + 
$${}_{0}^{1}n \rightarrow {}_{12}^{24}Mg + {}_{-1}^{0}e$$

b. 
$$^{231}_{90}Th \rightarrow _{-1}e$$

d. 
$$^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + _{}$$

f. 
$$^{222}_{86}Rn \rightarrow$$
\_\_\_\_\_ +  $\alpha$ 

h. 
$$^{218}_{84}Po \rightarrow _{---} + \alpha$$

j. 
$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow _{---} + {}^{1}_{1}H$$

1. 
$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + _____$$

n. 
$${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow _{----} + {}_{0}^{1}n$$

o. uranium-238 absorbs a neutron and forms uranium-239

p. uranium-239 emits an electron and forms neptunium-239

q. neptunium-239 emits an electron and forms plutonium-239

2. Titanium-51 decays with a half-life of six minutes. What fraction of the radioactive material present at time zero would still be available after one hour?

| 3. | The half-life of radium-226 is 1590 years. What fraction of a sample of radium-226 would remain after 9540 years?                                                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | After 10 half-lives the radioactivity of a sample is considered to be negligible. How long should strontium-90 be stored if $T_{1/2}$ = 28a? How long should iodine-131 be stored if $T_{1/2}$ = 8.05 days?                                                                             |
| 5. | A typical fission process occurs after $^{235}_{92}U$ absorbs a neutron and becomes the unstable isotope $^{236}_{92}U$ . This isotope can break apart, producing a $^{137}_{52}Te$ nucleus, a $^{97}_{40}Zr$ , and two neutrons. Write an equation to represent this nuclear reaction. |
| 6. | It is desired to use radioactive sulphur as a tracer in an experiment. Two beta-emitting isotopes are available: $^{35}_{16}S$ ( $T_{1/2} = 87$ days) and $^{37}_{16}S$ ( $T_{1/2} = 5$ minutes). Which would you choose and why?                                                       |
| 7. | The half-life of uranium-238 is 4.5 billion years. Explain why there is so much of this isotope still undecayed on Earth.                                                                                                                                                               |
| 8. | The half-life of $^{125}_{53}I$ is 60 days. What percent of the original radioactivity would be present after 360 days?                                                                                                                                                                 |
|    | ·                                                                                                                                                                                                                                                                                       |