Molecular Formula

Name - \qquad
1.) A gas has the empirical formula CH_{2}. If 0.850 L of the gas at STP has a mass of 1.59 g , what is the molecular formula?

$$
\text { Answers - } \quad \frac{1.59 \mathrm{~g}}{0.850 \mathrm{~L}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=\frac{41.90 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{41.90 \mathrm{~g}}{14.03 \mathrm{~g}}=2.99 \approx 3 \rightarrow \underline{C_{3} H_{6}}
$$

2.) A gas has the percentage composition: $30.4 \% \mathrm{~N}$ and $69.6 \% \mathrm{O}$. If the density of the gas is $4.11 \frac{\mathrm{~g}}{\mathrm{~L}}$, at STP, what is the molecular formula of the gas?

$$
\begin{aligned}
& \text { Answers - } 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{Natoms} \quad 69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{o}}=4.35 \mathrm{~mol} O \text { atoms } \\
& \frac{2.17 \mathrm{~mol} \mathrm{~N}}{2.17}=1.00 \mathrm{~mol} \mathrm{~N} \quad \frac{4.35 \mathrm{~mol} \mathrm{O}}{2.17}=2.00 \mathrm{~mol} \mathrm{O} \quad 1 \mathrm{~N}: 20=\mathrm{NO}_{2} \text { (E.F.) } \\
& \frac{4.11 \mathrm{~g}}{1 \mathrm{~L}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=\frac{92.06 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{92.06 \mathrm{~g}}{46.01 \mathrm{~g}}=2.00 \rightarrow \underline{\mathrm{~N}_{2} \mathrm{O}_{4}}
\end{aligned}
$$

3.) A compound has an empirical formula $\mathrm{C}_{5} \mathrm{H}_{11}$. If 0.0275 mol of the compound has a mass of 3.91 g , what is the molecular formula of the compound?

$$
\text { Answers - } \quad \frac{3.91 \mathrm{~g}}{0.0275 \mathrm{~mol}}=\frac{142.18 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{142.18 \mathrm{~g}}{71.16 \mathrm{~g}}=1.99 \approx 2 \rightarrow \underline{C_{10} H_{22}}
$$

4.) When a sample of nickel carbonyl is heated, 0.0600 mol of a gas containing carbon and oxygen is formed. The gas has a mass of 1.68 g and is 42.9% C. What is the molecular formula of the gas?

Answers - $42.9 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=3.57 \mathrm{~mol} \mathrm{C}$ atoms $\quad 57.1 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{go}}=3.57 \mathrm{~mol} \mathrm{O}$ atoms

$$
\begin{aligned}
& \frac{3.57 \mathrm{~mol} \mathrm{~N}}{3.57}=1.00 \mathrm{~mol} C \quad \frac{3.57 \mathrm{~mol} \mathrm{O}}{3.57}=1.00 \mathrm{~mol} \mathrm{O} \quad 1 \mathrm{C}: 10=C O \text { (E.F.) } \\
& \frac{1.68 \mathrm{~g}}{0.0600 \mathrm{~mol}}=\frac{28.0 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{28.0 \mathrm{~g}}{28.01 \mathrm{~g}}=1 \rightarrow \underline{\mathrm{CO}}
\end{aligned}
$$

5.) A gas sample is analysed and found to contain 33.0% Si and $67.0 \% \mathrm{~F}$. If the gas density is $7.60 \frac{g}{L}$ at STP, what is the molecular formula of the gas?

$$
\begin{aligned}
& \underline{\text { Answers }-33.0 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g} \mathrm{Si}}=1.17 \mathrm{~mol} \mathrm{Si} \text { atoms } \quad 67.0 \mathrm{~g} \mathrm{~F} \times \frac{1 \mathrm{~mol} F}{19.00 \mathrm{~g} F}=3.53 \mathrm{~mol} F \text { atoms }} \begin{array}{l}
\frac{1.17 \mathrm{~mol} \mathrm{Si}}{1.17}=1 \mathrm{~mol} \mathrm{Si} \quad \frac{3.53 \mathrm{~mol} \mathrm{~F}}{1.17}=3 \mathrm{~mol} \mathrm{~F} \quad 1 \mathrm{Si}: 3 F=\mathrm{SiF}_{3} \text { (E.F.) } \\
\frac{7.60 \mathrm{~g}}{1 \mathrm{~L}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=\frac{170.24 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{170.24 \mathrm{~g}}{85.09 \mathrm{~g}}=2.0 \rightarrow \underline{S i_{2} F_{6}}
\end{array}
\end{aligned}
$$

6.) A gas has the percentage composition: $78.3 \% \mathrm{~B}$ and $21.7 \% \mathrm{H}$. A sample bulb is filled with the unknown gas and weighed. The mass of unknown gas is found to be 0.986 times the mass of a sample of nitrogen gas in the same bulb under the same conditions of temperature and pressure. What is the molecular formula of the unknown gas?

$$
\begin{aligned}
& \text { Answers - } 78.3 \mathrm{~g} \mathrm{~B} \times \frac{1 \mathrm{~mol} B}{10.81 \mathrm{gB}}=7.24 \mathrm{~mol} \mathrm{Batoms} \quad 21.7 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=21.5 \mathrm{~mol} \mathrm{Hatoms} \\
& \left.\begin{array}{cc}
\frac{7.24 \mathrm{~mol} B}{7.24}=1 \mathrm{~mol} \mathrm{~B} & \frac{21.5 \mathrm{~mol} \mathrm{H}}{7.247}=2.97 \mathrm{~mol} \mathrm{H}
\end{array}\right]=3 \mathrm{H}=\mathrm{BH}_{3} \text { (E.F.) }
\end{aligned}
$$

7.) A gas has an empirical formula CH_{2}. If 0.500 L of the gas at STP has a mass of 0.938 g , what is the molecular formula of the compound?

$$
\text { Answers - } \quad \frac{0.938 \mathrm{~g}}{0.500 \mathrm{~L}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=\frac{42.02 \mathrm{~g}}{1 \mathrm{~mol}} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{42.02 \mathrm{~g}}{14.03 \mathrm{~g}}=2.99 \approx 3 \rightarrow \underline{C_{3} H_{6}}
$$

8.) A sample of gas has an empirical formula of O and a molar mass which is 3 times that of CH_{4}. What is the molecular formula of the gas?

$$
\text { Answer - } \quad 3 \times 16.05 \mathrm{~g} \mathrm{CH}_{4}=48.15 \mathrm{~g} \quad \frac{\text { molar mass }}{\text { E.F.mass }}=\frac{48.15 \mathrm{~g}}{16.00 \mathrm{~g}}=3 \quad \underline{O_{3}}
$$

