Derived Quantities - Algebra Practice

Name - \qquad
1.) Find the derived value and units for:
a.) the molar concentration, c, using the equation $c=\frac{n}{V}$, where $n=0.250 \mathrm{~mol}$ and $\mathrm{V}=0.500 \mathrm{~L}$.
b.) the universal gas constant, R , using the equation, $R=\frac{P V}{n T}$, where $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~V}=22.4 \mathrm{~L}, \mathrm{n}=1 \mathrm{~mol}, \mathrm{~T}=$ 298 K.
c.) the entropy change for boiling water, ΔS, using the equation

$$
\Delta H=T \Delta S \quad \text { where } \Delta H=44.0 \mathrm{~kJ} \text { and } \mathrm{T}=373 \mathrm{~K} .
$$

2.) If density is mass divided by volume and if mass is measured in grams and volume in litres, what is the unit of density?
3.) A 3.50 mL chunk of boron has a mass of 8.19 g . What is the density of boron?
4.) An iron bar has a mass of 125 g . If iron's density is $7.86 \times 10^{3} \frac{\mathrm{~g}}{\mathrm{~L}}$, what volume does the bar occupy?
5.) A 70.0 g sphere of manganese (density $7.20 \times 10^{3} \frac{\mathrm{~g}}{\mathrm{~L}}$) is dropped into a graduated cylinder containing 54.0 mL of water. What will be the water level indicated after the sphere is inserted?
6.) A 25.0 mL portion of each of $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z is poured into a 100 mL graduated cylinder. Each of the 4 compounds is a liquid and will not dissolve in the others. If 55.0 mL of W has a mass of $107.3 \mathrm{~g}, 12.0 \mathrm{~mL}$ of X has a mass of $51.8 \mathrm{~g}, 42.5 \mathrm{~mL}$ of Y has a mass of 46.8 g and 115.0 mL of Z has a mass of 74.8 g , list the layers in the cylinder from top to bottom.
7.) Explain why boats made of iron are able to float. The density of iron is $7.86 \times 10^{3} \frac{\mathrm{~g}}{\mathrm{~L}}$.
8.) The density of copper is $8.92 \times 10^{3} \frac{g}{L}$ and the density of magnesium is $1.74 \times 10^{3} \frac{g}{L}$. What mass of magnesium occupies the same volume as 100.0 g of copper?

