<u>Derived Quantities - Algebra Practice</u>

Name - _____

- 1.) Find the derived value and units for:
 - a.) the molar concentration, c, using the equation $c=\frac{n}{V}$, where n = $0.250\ mol$ and V = $0.500\ L$.
 - b.) the universal gas constant, R, using the equation, $R = \frac{PV}{nT}$, where P = 1 atm, V = 22.4 L, n = 1 mol, T = 298 K.
 - c.) the entropy change for boiling water, $\Delta S,$ using the equation

 $\Delta H = T\Delta S$ where $\Delta H = 44.0 \, kJ$ and $T = 373 \, K$.

2.) If density is mass divided by volume and if mass is measured in grams and volume in litres, what is the unit of density?

- 3.) A $3.50\,mL$ chunk of boron has a mass of $8.19\,g$. What is the density of boron?
- 4.) An iron bar has a mass of 125 g. If iron's density is $7.86 \times 10^3 \frac{g}{L}$, what volume does the bar occupy?
- 5.) A 70.0 g sphere of manganese (density $7.20 \times 10^3 \frac{g}{L}$) is dropped into a graduated cylinder containing $54.0 \, mL$ of water. What will be the water level indicated after the sphere is inserted?

6.) A $25.0 \, mL$ portion of each of W, X, Y, and Z is poured into a $100 \, mL$ graduated cylinder. Each of the 4 compounds is a liquid and will not dissolve in the others. If $55.0 \, mL$ of W has a mass of $107.3 \, g$, $12.0 \, mL$ of X has a mass of $51.8 \, g$, $42.5 \, mL$ of Y has a mass of $46.8 \, g$ and $115.0 \, mL$ of Z has a mass of $74.8 \, g$, list the layers in the cylinder from top to bottom.

7.) Explain why boats made of iron are able to float. The density of iron is $7.86 \times 10^3 \frac{g}{L}$

8.) The density of copper is $8.92 \times 10^3 \frac{g}{L}$ and the density of magnesium is $1.74 \times 10^3 \frac{g}{L}$. What mass of magnesium occupies the same volume as $100.0 \ g$ of copper?