Kinematics Review

Solve the following problems using the principles and equations of kinematics.

1.) The average velocity of a min-bike is $+15.0 \frac{\mathrm{~km}}{\mathrm{~h}}$, how long will it take to go 35.0 m ?

$$
\vec{v}_{\text {avg }}=\frac{\Delta \vec{a}}{\Delta t} \quad+4.16666=\frac{35}{t} \quad \mathrm{t}=8.4 \mathrm{~s}
$$

2.) A sprinter starting from rest reaches a final velocity of $+28.8 \frac{\mathrm{~km}}{\mathrm{~h}}$. What is her average velocity?

- The average is $\frac{+28.8+0}{2}=+14.4 \frac{\mathrm{~km}}{\mathrm{~h}}$
3.) A coin is dropped and strikes the earth with a velocity of $15.15 \frac{\mathrm{~m}}{\mathrm{~s}}$. For how long was it falling, and what from what height did it fall?
$\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$ $-15.15=0+-9.81 t$ $t=1.55 \mathrm{~s}$
$\vec{d}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$
$\vec{d}=0+(0.5)(-9.81)(1.564)^{2}$
$\vec{d}=-11.71 m$
4.) A rocket lifts off from Earth at $+13.3 \frac{m}{s^{2}}$ from the launch pad, how high into the atmosphere does it rise during the first five seconds of its path?
$\vec{d}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \quad \vec{d}=0+\frac{1}{2}(13.3) 5^{2} \quad \vec{d}=+166 m$
5.) A truck accelerates from rest to a velocity of $+22.4 \frac{\mathrm{~m}}{\mathrm{~s}}$ at a rate of $+0.60 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. How long was it accelerating and how far did it travel while accelerating?
$\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$
$22.4=0+(0.60) t$
$t=37.3 \mathrm{~s}$
$\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d}$
$22.4^{2}=0+2(0.60)(\vec{d})$
$\vec{d}=+418 \mathrm{~m}$
6.) A car in a school zone accelerates from $+85 \frac{\mathrm{~km}}{\mathrm{~h}}$ to $+120 \frac{\mathrm{~km}}{\mathrm{~h}}$ in 9.2 s . What was its acceleration?
$\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$
$33.3333=23.6111111+\vec{a}(9.2)$
$\vec{a}=+1.06 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
7.) How long will it take for a rock to fall to the ground if dropped from a height of 92.0 m ?

$$
\vec{d}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \quad-92.0=0+\frac{1}{2}(-9.81) t^{2} \quad t=4.3 \mathrm{~s}
$$

8.) A rock is thrown down from a rail trestle with height 13.0 m at velocity $+18.8 \frac{\mathrm{~m}}{\mathrm{~s}}$. With what velocity will it strike the ground?

$$
\vec{v}_{f}^{2}=\vec{v}_{0}^{2}+2 \vec{a} \vec{d} \quad \vec{v}_{f}^{2}=-18.8^{2}+2(-9.81)(-13) \quad \vec{v}_{f}=+24.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

9.) A car travelling at $90.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ comes to a stop in 12.0 s , what was its acceleration?

$$
\vec{a}=\frac{\Delta \vec{v}}{\Delta t} \quad \vec{a}=\frac{25}{12} \quad \vec{a}=-2.1 \frac{m}{s^{2}}
$$

10.) A car travelling at $60.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ accelerates to $90.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ at $+2.03 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. How long does this take and how far does the car travel in this time? $\vec{v}_{f}=\vec{v}_{o}+\vec{a} t \quad+25=+16.666666+2.03 t \quad t=4.11 \mathrm{~s}$
$\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d} \quad 25^{2}=16.6666^{2}+2(2.03)(\vec{d}) \quad \vec{d}=85.5 \mathrm{~m}$
11.) A rock is dropped from a bridge and strikes the water below $24.0 s$ later. With what speed did it strike the water and from what height was it dropped?
$\vec{v}_{f}=\vec{v}_{o}+\vec{a} t$
$\vec{v}_{f}=0+(-9.81)(24.0)$
$\vec{v}_{f}=-235 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\vec{d}=\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2}$
$\vec{d}=0+\frac{1}{2}(-9.81)(24.0)^{2}$
$\vec{d}=-2.82 \times 10^{3} \mathrm{~m}$
12.) A bullet is fired upward from a gun and reaches a maximum height of 2100 m . What is its velocity at the high point, what was its initial velocity, and how long was it in the air?

- high point velocity $=0$
$\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d} \quad 0^{2}=\vec{v}_{o}^{2}+2(-9.81)(2100) \quad \vec{v}_{o}=+203 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\vec{v}_{f}=\vec{v}_{o}+\vec{a} t \quad 0=203+-9.81 t \quad t=20.7 \mathrm{~s} \quad t=20.7 \times 2=41.4 \mathrm{~s}$
13.) A cat is thrown upward from the edge of a building with velocity $+2.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. If the cat then falls the entire height of the building (30.0 m) with what velocity will it strike the ground?

$$
\begin{array}{llc}
\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d} & 0=2^{2}+2(-9.81)(\vec{d}) & \vec{d}=0.204 \mathrm{~m} \\
\vec{v}_{f}^{2}=\vec{v}_{o}^{2}+2 \vec{a} \vec{d} & \vec{v}_{f}^{2}=0+2(-9.81)(-30.204) & \vec{v}_{f}=-24.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

