Reaction Kinetics

- 1.) A 5.0 g sample of magnesium reacts completely with a hydrochloric acid solution after 150 s. Express the average rate of consumption of magnesium, in units of $\frac{g}{min}$.
- 2.) How long will it take to completely react 45.0 g $CaCO_{3(s)}$ with dilute $HCl_{(aq)}$ if the reaction proceeds at an average rate of $\frac{2.35 g CaCO_{3(s)}}{min}$ under a given set of conditions?
- 3.) The electrolysis of water produces oxygen gas at the rate of $\frac{32.5 \ mL}{min}$ in a certain experiment. What volume of oxygen gas can be produced in 7.50 min?
- 4.) Which of the following are acceptable units of expressing reaction rate?

a.)	moles second	$c.) \frac{\frac{moles}{litre}}{second}$	e.) $rac{millilitres}{hour}$
b.)	minutes metre	d.) $\frac{grams}{litre}$	f.) $\frac{grams}{minute}$

5.) Hydrogen and oxygen gas react in a fuel cell to produce water according to the equation:

$$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(I)}$$

If the rate of water production s $1.34 \frac{mol}{min}$, what is the rate of oxygen gas consumption expressed in $\frac{mol}{min}$?

6.) When an Alka SeltzerTM tablet is dropped in water, it immediately begins to produce bubbles of CO_2

forming. The reaction is as follows:

 $NaHCO_{3(s)} + H^{+}_{(aq)} \rightarrow CO_{2(g)} + Na^{+}_{(aq)} + H_{2}O_{(l)}$

The H⁺ is produced in the reaction and the NaHCO₃ (baking soda) is an ingredient of the tablet. If the following data was found for the above reaction, plot the data on the graph below.

Time (s)	Mass (g)
0	150.00
10	149.94
20	149.88
30	149.82

Using the graph you created above, answer the following questions.

- a.) Why is the mass decreasing?
- b.) What is the slope of the line in the above graph including units?
- c.) What units would you expect to use for the rate of this reaction?
- d.) What relationship exists between the slope of the graph and the rate of the reaction?
- 7.) When measuring the rate at which the mass of copper metal decreases in a reaction with nitric acid, why can't you just put the reaction vessel on a digital balance and record the decrease in mass of the copper?
- 8.) a.) Solutions of Cu⁺²(aq) are blue, while solutions of Ag⁺(aq) are colourless. Use only this information to describe how you would measure the rate of the reaction:

 $2 \operatorname{Ag}_{(aq)}^{+} + Cu_{(aq)} \rightarrow 2 \operatorname{Ag}_{(s)} + Cu^{+2}_{(aq)} + 35 kJ$

- b.) Suggest two more methods that could be used to determine the reaction rate for the equation above.Be sure to state the property you are monitoring.
- 9.) a.) You are to measure the rate of this reaction: $H_{2(g)} + Cl_{2(g)} \rightarrow 2 \text{ HCl}_{(g)}$. Why is gas pressure NOT a good property to monitor in order to determine the reaction rate?

b.) Calculate the reaction rate, in $\frac{mol HCl}{s}$, if 1.2 g of HCl (g) are produced in 2.0 min.

c.) If the rate of consumption of hydrogen gas under certain conditions is 0.200 L/min, what is the rate of production of HCl (g)?