\qquad

Draw Diagrams. Show work. Round off all answers to one decimal place. (3 marks each)
1.) The angle of elevation of the Rock Mountain fire-control tower from the top of Blue Mountain 3.0 km away (horizontal distance) is 18°. How much higher than Blue Mountain is the fire-control tower? $0.97 \mathrm{~km} \quad 18^{\circ}$

$$
\tan 18=\frac{x}{3.0} \quad x=0.9747
$$

$x=0.97 \mathrm{~km}$
2.) The angle of elevation of the summit from the bottom of the second lift at Snow Bowl is 33.0°. If a skier rides $1000 . \mathrm{m}$ on this lift to the summit, what is the vertical distance between the bottom of the lift and the summit? 545 m

$$
\sin 33=\frac{x}{1000 .} \quad x=544.639 \quad x=545 \mathrm{~m}
$$

3.) The angle of depression of a aircraft carrier from an approaching airplane is 52.2°. If the plane is 700. m above level of the deck of the carrier, how far away (horizontally) is the carrier? 543 m

$$
\tan 52.2=\frac{700}{x .} \quad x=542.9756 \quad \underline{x=543 \mathrm{~m}}
$$

4.) The navigator on a bomber finds that the angle of depression of a target 4.00 km away is 11.4°. At what altitude is the plane flying? 0.807 km

5.) Billy's kite has a string $40 . \mathrm{m}$ long and is flying 27 m above his eye level. Find the angle of elevation of the kite. 42°

$$
\sin \theta=\frac{27}{40}
$$

$$
\theta=42.454
$$

$x=42 m$
6.) At an airport, cars drive down a ramp 96 m long to reach the lower level baggage-claim area 13 m below the main level. What angle does the ramp make with the ground at the lower level? 7.8°

$$
\sin \theta=\frac{13}{96}
$$

$$
\theta=7.783
$$

$\theta=7.8^{\circ} \mathrm{m}$
7.) A surveyor standing in a ravine finds the angle of elevation of the top of one side is 15.13°. If he is standing 14 m from the base of this side, how deep is the ravine? 3.8 m

$$
\tan 15.13=\frac{x}{14 .} \quad x=3.785
$$

$x=3.8 \mathrm{~m}$

8.) As an airplane flying north passes directly over a civil defense air watch unit, another unit 4.30 km due north finds the angle of elevation of the plane to be 19.17°. Find the altitude of the plane. 1.50 km

$$
\tan 19.17=\frac{x}{4.30 .} \quad x=1.495
$$

$x=1.50 \mathrm{~km}$
9.) Find the length of the altitude of an isosceles triangle whose base has length 20.0 cm and whose base angles each has a measure of $45^{\circ} . \mathbf{1 0 . c m}$

$$
\tan 45=\frac{10.0}{x .} \quad x=10
$$

$x=10 . \mathrm{cm}$
10.) A pendulum $40 . \mathrm{cm}$ long is moved $30 .{ }^{\circ}$ from the vertical. How much is the lower end of the pendulum lifted? 5.4 cm

$$
\begin{array}{lrr}
\cos 30=\frac{x}{40 .} & x=34.64 \\
y=40.0-34.64 & y=5.35 & y=5.4 \mathrm{~m}
\end{array}
$$

11.) The top of a vertical tree broken by the wind hits the ground 25.0 m from the foot of the tree. If the upper portion makes an angle of 30.0° with the horizontal ground, what was the original height of the tree? 43.3 m

$$
\text { height }=x+y
$$

height $=43.3 \mathrm{~m}$
12.) The angle of elevation of the top of Billings building from the roof of the Wolcott Building (in the same vertical plane) is 33.10°. As well, from the roof of the Wolcott to the $15^{\text {th }}$ floor of the Billings building is 21.50°. If the distance between the roof and the $15^{\text {th }}$ floor is 101 m , how far apart are the buildings? 392 m

$\begin{array}{ll}\text { 1.) } \tan 33.10=\frac{y+101}{x} & x=\frac{y+101}{\tan 33.10} \\ \text { 2.) } \tan 21.50=\frac{y}{x} & x=\frac{y}{\tan 21.50}\end{array}$
Combine 1 and 2
$\frac{y+101}{\tan 33.10}=\frac{y}{\tan 21.50} \quad \frac{\tan 21.50(y+101)}{\tan 33.10}=y$
$\tan 21.50(y+101)=(\tan 33.10) y$
$\tan 21.50 y+\tan 21.50 \times 101=(\tan 33.10) y$
$\tan 21.50 \times 101=(\tan 33.10) y-\tan 21.50 y$
$101.3939=0.25798 y \quad y=154.216$
$x=391.501 \quad \underline{x=392 m}$
13.) From a point on the ground 75 m from the base of a building, the angle of elevation of the top of a flagpole on the edge of the roof of the building is 45.20° and the angle of elevation of the bottom of

1.) $\tan 45.20=\frac{x}{75} \quad x=75.525$
2.) $\tan 38.40=\frac{y}{75} \quad y=59.44$

$$
\begin{aligned}
\text { height }=x-y & & \text { height }=75.525-59.44 \\
\text { height }=16.085 & & \text { height }=16.1 \mathrm{~m}
\end{aligned}
$$

14.) How far from the vertical wall of a building is the base of a thirty-foot ladder, which makes a 75° angle with the ground? 7.8 ft

$$
\cos 75=\frac{x}{30 .} \quad x=7.7645
$$

$\underline{x=7.8 \mathrm{ft}}$

