Graphing Skills

Independent variable - recorded on the X-axis, most common one is time in physics.
Dependent variable - recorded on the Y-axis.

Very Important Math 10 Review

Linear graphs - shows a relation between Y and X variables, Y increases as a multiple of X. The equation of the line is in the form $y=m x+b$, where m is the slope of the line and b is the y-intercept. Ex. $-y=3 x+2$

Exponential graphs - shows a relation between Y and X variables, Y increases as a multiple of $x^{\text {exponent }}$. The equation of the line is in the form $y=a x^{2}+b$, where a is a constant and b is the y-intercept. Ex. $-y=3 x^{2}$ Inverse graphs - show a relation between Y and X variables, Y increases as a multiple of $\frac{1}{x}$. The equation of the line is in the form $y=a \frac{1}{x}+b$, where a is a constant and b is the y-intercept. Ex. $-y=\frac{1}{x}+2$

For linear graphs - slope shows the direct relationship between the Y and X variables.
For all graphs - Y-intercept shows the initial value of the dependant variable.
Plotting - putting dots on a graph.
Graphing - drawing in the approximate curve that goes close to all data points (a line IS a type of a curve!) When your graph is a line, expect to be finding the slope!

Part I

1.) Plot the following data:

Time (s)	Distance (m)
0	2.0
1	4.1
2	6.0
3	7.9
4	9.9
5	12.0
6	14.1
7	16.0
8	18.2

2.) Graph the data

WHEN GRAPHING THE DATA, DRAW A CURVE THAT GOES CLOSE TO (BUT NOT NECESSARILY
THROUGH) ALL DATA POINTS. This is called 'the line of best fit' or curve fitting.
3.) Describe the relationship (between the Y-variable [distance] and the X-variable [time])
4.) What is the slope?
5.) What are the units of the slope?
6.) What was the initial value?

Part II

1.) Plot the following data:

Time (s)	velocity $\left(\frac{\mathrm{m}}{\mathrm{s}}\right)$
0	16
1	12
2	7.2
3	4.0
4	-0.1
5	-4.0
6	-8.0
7	-12
8	-16

2.) Graph the data.
3.) Describe the relationship (between the Y-variable [velocity] and the X-variable [time]).
4.) What is the slope?
5.) What are the units of the slope?
6.) What was the initial value?

Part III

1.) Plot the following data:

Time (s)	Distance (m)
0	0
1	1.0
2	4.1
3	9.0
4	16.2
5	24.8
6	36.3

2.) Graph the data.
3.) Describe the relationship (between the Y-variable [distance] and the X-variable [time]).
4.) What is the initial value?
5.) Determine an equation for the relationship, it should be of the form: $d=$ constant number $\times t^{\text {exponent }}$
6.) How would the graph look different if the equation were $d=t^{2}+3$?

