Chemistry 12

Worksheet for K_{eq} calculations

1. Write the expression for the equilibrium constant for each of the following reactions.

(a)
$$H_{2(g)} + Cl_{2(g)} \Leftrightarrow 2 HCl_{(g)}$$

(b)
$$2 SO_{2(g)} + O_{2(g)} \Leftrightarrow 2 SO_{3(g)}$$

$$K_{eq} =$$

(c)
$$N_{2(g)} + 3 H_{2(g)} \Leftrightarrow 2 NH_{3(g)}$$

(d)
$$2 CO_{(g)} + O_{2(g)} \Leftrightarrow 2 CO_{2(g)}$$

$$K_{eq} =$$

$$K_{eq} =$$

(e)
$$CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$$

(f)
$$HCN_{(g)} \Leftrightarrow H^+_{(aq)} + CN^-_{(aq)}$$

$$K_{eq} =$$

$$K_{eq} = -$$

(g)
$$H_2SO_{4(l)} \Leftrightarrow H^+_{(aq)} + HSO_4^-_{(aq)}$$

(h)
$$H_2CO_{3(aq)} \Leftrightarrow 2 H_{(aq)}^+ + CO_3^{2-}$$

$$K_{eq} =$$

$$K_{eq} =$$

- 2. From selected equilibrium constant expressions above, calculate the value of the equilibrium constant (K_{eq}) .
 - (a) from 1(a) above: equilibrium $[H_2] = [Cl_2] = [HCl] = 1.0 \times 10^{-2} M$

$$[SO_2] = 1.0 \times 10^{-3} \text{ M}$$

$$[O_2] = 2.0 \times 10^{-3} \text{ M}$$

$$[SO_3] = 3.0 \times 10^{-3} \text{ M}$$

$$[N_2] = 4.4 \times 10^{-2} \text{ M}$$

 $[H_2] = 1.2 \times 10^{-1} \text{ M}$
 $[NH_3] = 3.4 \times 10^{-3} \text{ M}$

3. From 1(a) above, assume the equilibrium constant to be 55.0. During an experiment, the equilibrium $[H_2] = 4.8 \times 10^{-3} \,\text{M}$ and $[Cl_2] = 2.1 \times 10^{-3} \,\text{M}$. What is the equilibrium [HCl]?

4. Under a given set of experimental conditions, the reaction;

$$N_{2(g)} + O_{2(g)} \Leftrightarrow 2 \, NO_{(g)}$$
 has a $K_{eq} = 6.2 \times 10^{-4}$. If the equilibrium $[N_2] = [O_2] = 5.2$ M, then what is the equilibrium [NO]?

5. According to 1(b) above, if 0.600 mole of SO_2 and 0.600 mole of O_2 are placed into a 1.00 L container and allowed to establish equilibrium, the equilibrium $[SO_3] = 0.500$ M. Calculate the value of K_{eq} .

Must use an ICE box to calculate the equilibrium values of SO_2 and O_2

	2 SO ₂	+	O ₂	⇔ 2 SO ₃
I				
C				
	· · · · · · · · · · · · · · · · · · ·			
Е				

K_{eq}	=
eg	

6. Under a given set of experimental conditions, the reaction;

$$2 \text{ HI}_{(g)} \Leftrightarrow \text{ H}_{2(g)} + \text{ I}_{2(g)}$$

 $2 \, \mathrm{HI}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{g})} + \mathrm{I}_{2(\mathrm{g})}$ has a $K_{eq} = 2.4$. If the initial [HI] = 0.200 M, then what are the equilibrium concentrations of all of the chemicals in the reaction?

	 2 HI	⇔	H ₂	+	I ₂
I					
С	· ,,,,				
Е	-				

K	=
eq	