Enthalpy Practice

As always show all work and box your final answer for the following problems.
(Remember Kilo is the prefix meaning one thousand. Ex. - 5 kilojoules is equal to 5000 joules)
1.) How much heat is needed to raise the temperature of 257 g of ethanol $\left(C_{\text {ethanol }}=2.4 \frac{\mathrm{~J}}{\mathrm{~g}}{ }^{\circ} \mathrm{C}\right)$ by $49.1^{\circ} \mathrm{C}$?
2.) How much heat is needed to raise the temperature of 125.0 g of lead $\left(C_{\text {lead }}=0.130 \frac{\mathrm{~J}}{\mathrm{~g}}{ }^{\circ} \mathrm{C}\right)$ from $17.5^{\circ} \mathrm{C}$ to $41.1^{\circ} \mathrm{C}$?
3.) How many kilojoules of heat are required to heat 1.37 kg of water from $21.3^{\circ} \mathrm{C}$ to $89.5^{\circ} \mathrm{C}$?
4.) What mass of iron ($C_{\text {iron }}=903 \frac{J}{k g}^{\circ} \mathrm{C}$) would need 305 kJ or energy to raise the temperature by $87 .{ }^{\circ} \mathrm{C}$? (be careful!!!)
5.) What is the final temperature of a bar of nickel $\left(C_{\text {nickel }}=0.54 \frac{\mathrm{~J}}{\mathrm{~g}}{ }^{\circ} \mathrm{C}\right)$ if 3228 J of energy is added to a 384 g sample with an initial temperature of $24.4^{\circ} \mathrm{C}$?
6.) What is the specific heat of an unknown metal sample if 10.3 kJ of energy are required to raise the temperature of 254.3 g sample of the metal by $38^{\circ} \mathrm{C}$?

Part 2

Practice: Thermal Energy Calculations

Answer the following questions. Make sure to show all work for the math problems to receive credit. You may need a separate sheet of paper.

1. Explain the relationship between temperature, energy, and motion of particles in an object.
2. Referencing the reasoning you used from \#1, explain the difference between objects that feel hot and those that feel "cold".
3. You've been waiting for the bus and your hands become cold. When you get onto the bus and sit down, you put your hands under your legs to warm up. After a while your hands feel warmer but your legs feel colder. Explain this with regards to what you know about thermal energy transfer.
4. How much energy must be absorbed by water with a mass of 0.5 kg in order to raise the temperature from $30^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$? Note: Water has a specific heat of $4,190 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
5. How much heat is needed to warm .052 kg of gold from $30^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$? Note: Gold has a specific heat of 136 $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
6. A 9.5 kg outdoor copper sculpture heats up during the day from $24^{\circ} \mathrm{C}$ to $78^{\circ} \mathrm{C}$. How much energy was absorbed? Note: Copper has a specific heat of $390 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.
7. Challenge: If it takes 820 Joules of heat to warm a sample of zinc from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, what would be the mass of the zinc? Note: Zinc has a specific heat of $380 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.
8. What mass of iron ($\mathrm{c}_{\text {iron }}=0.11 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$) would need 1450 cal of energy in order to raise its temperature by $19.7^{\circ} \mathrm{C}$?
9. What is the final temperature of a samples of nickel (cnickel $=0.54 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$) if 328 J of energy is added to a 16.7 g sample at an initial temperature of $24.4^{\circ} \mathrm{C}$?
10. What is the specific heat of an unknown metal if 1.67 kcal of energy are required to raise the temperature of 79.2 g sample of the metal by $63.3^{\circ} \mathrm{C}$?
