

1.) Develop a graph below for conversion from Celsius to Kelvin.

2.) Calculate the energy required to raise a 1.0 kg mass of iron from 10. °C to 30. °C.

Answers -	$E_H = mc\Delta T$	$E_H = (1.0)(450)(20)$	$E_{H} = 9.00 \times 10^{3} I$

3.) Explain why the same amount of energy is required even if the calculation is performed in Kelvin.

<u>Answers</u> - Since both scales have the same value between increments 1° C is equal to 1 K.

4.) What happens to water at 273 K?

<u>Answers</u> - water freezes as this is equivalent to 0°C.

5.) What happens at 0 K?

Answers - all movement at an atomic level ceases.

<u>Answers</u> - 1) (2) $9.00 \times 10^{3} J$ (3) Because E_{H} is based on ΔT and ΔT is the same in °C as in K (4) Freezing point 5) no molecular motion

Energy as E_H

1.) A car of mass 1000. kg requires $1.25 \times 10^{6} J$ of energy to reach a speed of $90.\frac{km}{h}$. How much energy is "lost" as heat?

Answers -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = 0.5(1000)(25)^2$ $E_k = 3.125 \times 10^5 J$
 $1.25 \times 10^6 - 3.125 \times 10^5$ $= 9.375 \times 10^5 J$ $= 9.4 \times 10^5 J$

2.) What is the efficiency of the car above?

<u>Answers</u> - $Eff = \frac{out}{in} \times 100$ $Eff = \frac{3.125 \times 10^5}{1.25 \times 10^6} \times 100$ <u>Eff = 25%</u>

3.) A skier of mass 70 kg descends a 30.° slope. If he travels a distance of 50.m along the slope and has a speed of $15\frac{m}{s}$ at the bottom how much energy is "lost" due to friction and air resistance?

<u>Answers</u> -	$E_{total} = E_{total}'$	$E_k + E_p = E_k' + E_p'$	$E_p = E_k'$
	$mgh = \frac{1}{2}mv^2$	$(70)(9.81)(25) = 0.5(70)(15)^2$	17167.5 ≠ 7875
	$17167.5 - 7875 = 9292.5 = 9.29 \times 10^3 I$		

- 4.) A 0.25 kg ball falls from height 5.0 m and bounces up. If it is still rising at $5.0 \frac{m}{s}$ when it has rebounded to height 1.5 m how much energy is "lost" as heat?
 - <u>Answers</u> $E_{total} = E_{total}'$ $E_k + E_p = E_k' + E_p'$ $E_p = E_k' + E_p'$ $mgh = \frac{1}{2}mv^2 + mgh$ $(0.25)(9.81)(5.0) = 0.5(0.25)(5.0)^2 + (0.25)(9.81)(1.5)$ $12.2625 \neq 6.80375$ 12.2625 - 6.80375 = 5.45875 $E_H = 5.46 J$
- 5.) Two copper spheres of mass 500. g are clashed together causing paper between them to ignite. If the ignition point of paper is 212°C and the spheres started at 20°C what will be the energy required to ignite the paper? (Assume the spheres are the same temp as the paper, and all energy stays in the spheres from the collision.)

```
<u>Answers</u> - E_H = mc\Delta T E_H = (1.0)(385)(192) E_H = 7.39 \times 10^4 J
```