Heat Energy

1.) Develop a graph below for conversion from Celsius to Kelvin.

2.) Calculate the energy required to raise a 1.0 kg mass of iron from $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Answers -
$E_{H}=m c \Delta T$
$E_{H}=(1.0)(450)(20)$
$\underline{E}_{H}=9.00 \times 10^{3} I$
3.) Explain why the same amount of energy is required even if the calculation is performed in Kelvins.

Answers - Since both scales have the same value between increments $1^{\circ} \mathrm{C}$ is equal to 1 K .
4.) What happens to water at 273 K ?

Answers - water freezes as this is equivalent to $0^{\circ} \mathrm{C}$.
5.) What happens at $0 K$?

Answers - all movement at an atomic level ceases.

Answers - 1)

2) $9.00 \times 10^{3} \mathrm{~J}$
3) Because E_{H} is based on ΔT and ΔT is the same in ${ }^{\circ} \mathrm{C}$ as in K
4) Freezing point 5) no molecular motion

Energy as $E_{\underline{H}}$

1.) A car of mass 1000 kg requires $1.25 \times 10^{6} \mathrm{~J}$ of energy to reach a speed of $90 \frac{\mathrm{~km}}{\mathrm{~h}}$. How much energy is "lost" as heat?

$$
\begin{aligned}
\text { Answers - } \quad E_{k}=\frac{1}{2} m v^{2} \quad E_{k}=0.5(1000)(25)^{2} \quad E_{k}=3.125 \times 10^{5} \mathrm{~J} \\
1.25 \times 10^{6}-3.125 \times 10^{5}=9.375 \times 10^{5} \mathrm{~J} \quad=9.4 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

2.) What is the efficiency of the car above?
Answers -
$E f f=\frac{\text { out }}{\text { in }} \times 100$
$E f f=\frac{3.125 \times 10^{5}}{1.25 \times 10^{6}} \times 100$
$\underline{E f f}=25 \%$
3.) A skier of mass 70 kg descends a 30° slope. If he travels a distance of 50 m along the slope and has a speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ at the bottom how much energy is "lost" due to friction and air resistance?

$$
\begin{array}{lll}
\text { Answers - } & E_{\text {total }}=E_{\text {total }}{ }^{\prime} & E_{k}+E_{p}=E_{k}{ }^{\prime}+E_{p}{ }^{\prime} \\
m g h=\frac{1}{2} m v^{2} & (70)(9.81)(25)=0.5(70)(15)^{2} & 17167.5 \neq 7875 \\
17167.5-7875=9292.5 & =9.29 \times 10^{3} L &
\end{array}
$$

4.) A 0.25 kg ball falls from height 5.0 m and bounces up. If it is still rising at $5.0 \frac{\mathrm{~m}}{\mathrm{~s}}$ when it has rebounded to height 1.5 m how much energy is "lost" as heat?
Answers -

$$
\begin{aligned}
& E_{\text {total }}=E_{\text {total }}^{\prime} \\
& m g h=\frac{1}{2} m v^{2}+m g h \\
& 12.2625 \neq 6.80375
\end{aligned}
$$

$$
E_{k}+E_{p}=E_{k}^{\prime}+E_{p}^{\prime}
$$

$$
E_{p}=E_{k}^{\prime}+E_{p}^{\prime}
$$

$$
(0.25)(9.81)(5.0)=0.5(0.25)(5.0)^{2}+(0.25)(9.81)(1.5)
$$

$$
12.2625-6.80375=5.45875
$$

$$
\underline{E}_{H}=5.46 I
$$

5.) Two copper spheres of mass 500 g are clashed together causing paper between them to ignite. If the ignition point of paper is $212^{\circ} \mathrm{C}$ and the spheres started at $20^{\circ} \mathrm{C}$ what will be the energy required to ignite the paper? (Assume the spheres are the same temp as the paper, and all energy stays in the spheres from the collision.)

$$
\text { Answers - } \quad E_{H}=m c \Delta T \quad E_{H}=(1.0)(385)(192) \quad E_{H}=7.39 \times 10^{4} \mathrm{~J}
$$

Answers -1.) $E_{H}=9.38 \times 10^{5} \mathrm{~J}$
2.) 25%
3.) $E_{H}=9.28 \times 10^{3} \mathrm{~J}$
4.) $E_{H}=5.46 \mathrm{~J}$
5.) $E_{H}=7.39 \times 10^{4} \mathrm{~J}$

