Heat Energy

1.) Develop a graph below for conversion from Celsius to Kelvin.

2.) Calculate the energy required to raise a $1.0\,kg$ mass of iron from 10°C to 30°C .

Answers -
$$E_H = mc\Delta T$$
 $E_H = (1.0)(450)(20)$

$$E_H = (1.0)(450)(20)$$

$$\underline{E_H} = 9.00 \times 10^3 \underline{J}$$

3.) Explain why the same amount of energy is required even if the calculation is performed in Kelvins.

<u>Answers</u> - Since both scales have the same value between increments 1° C is equal to 1 K.

4.) What happens to water at 273 K?

Answers - water freezes as this is equivalent to 0° C.

5.) What happens at 0 K?

Answers - all movement at an atomic level ceases.

Answers - 1)

- 3) Because E_H is based on ΔT and ΔT is the same in $^o \text{C}$ as in K
- 4) Freezing point 5) no molecular motion

Energy as EH

1.) A car of mass 1000~kg requires $1.25\times10^{~6}~J$ of energy to reach a speed of $90\frac{km}{h}$. How much energy is "lost" as heat?

Answers -
$$E_k = \frac{1}{2}mv^2$$
 $E_k = 0.5(1000)(25)^2$ $E_k = 3.125 \times 10^5 J$
 $1.25 \times 10^6 - 3.125 \times 10^5$ $= 9.375 \times 10^5 J$ $= 9.4 \times 10^5 J$

2.) What is the efficiency of the car above?

Answers -
$$Eff = \frac{out}{in} \times 100$$
 $Eff = \frac{3.125 \times 10^5}{1.25 \times 10^6} \times 100$ $Eff = 25\%$

3.) A skier of mass 70~kg descends a 30° slope. If he travels a distance of 50~m along the slope and has a speed of $15\frac{m}{s}$ at the bottom how much energy is "lost" due to friction and air resistance?

Answers -
$$E_{total} = E_{total}'$$
 $E_k + E_p = E_k' + E_p'$ $E_p = E_k'$
$$mgh = \frac{1}{2}mv^2 \qquad (70)(9.81)(25) = 0.5(70)(15)^2 \qquad 17167.5 \neq 7875$$

$$17167.5 - 7875 = 9292.5 \qquad = 9.29 \times 10^3 \, \text{J}$$

4.) A 0.25 kg ball falls from height 5.0 m and bounces up. If it is still rising at $5.0 \frac{m}{s}$ when it has rebounded to height 1.5 m how much energy is "lost" as heat?

Answers -
$$E_{total} = E_{total}'$$
 $E_k + E_p = E_k' + E_p'$ $E_p = E_k' + E_p'$ $mgh = \frac{1}{2}mv^2 + mgh$ $(0.25)(9.81)(5.0) = 0.5(0.25)(5.0)^2 + (0.25)(9.81)(1.5)$ $12.2625 \neq 6.80375$ $12.2625 - 6.80375 = 5.45875$ $E_H = 5.46 J$

5.) Two copper spheres of mass 500 g are clashed together causing paper between them to ignite. If the ignition point of paper is 212° C and the spheres started at 20° C what will be the energy required to ignite the paper? (Assume the spheres are the same temp as the paper, and all energy stays in the spheres from the collision.)

Answers -
$$E_H = mc\Delta T$$
 $E_H = (1.0)(385)(192)$ $E_H = 7.39 \times 10^4 J$

Answers - 1.)
$$E_H = 9.38 \times 10^5 J$$
 2.) 25% 3.) $E_H = 9.28 \times 10^3 J$ 4.) $E_H = 5.46 J$ 5.) $E_H = 7.39 \times 10^4 J$