Energy Conservation

- 1.) The driver of a 1200 kg car travelling at $50.\frac{km}{h}$ applies the brakes so that there is a force of friction on the wheels of 1550 N, while the car travels a distance of 25 m.
 - a.) What is the original kinetic energy of the car?
 - b.) How much work is done by the force of friction from the brakes?
 - c.) How much of the car's kinetic energy is transformed to heat?
 - d.) What is the car's kinetic energy when the driver takes his foot off the brakes?
 - e.) What is the car's speed when the driver takes his foot off the brakes?
 - f.) How much work would the force of friction have had to do to stop the car?
 - g.) How much farther would the car have travelled with the drivers foot on the brake for the car to stop?
- 2.) It requires 502 KJ of heat energy to raise the temperature of 1.5 kg of water from 20.°C to 100.°C. It takes a kettle with a power of 1500 W, 6.5 minutes to boil the water.
 - a.) How much electrical energy is transformed into heat energy by the kettle?
 - b.) What is the efficiency of the kettle?
- 3.) A 100.W incandescent light bulb is only about 21% efficient. How much light energy per second does the bulb supply?

- 4.) A car of mass 1250 kg travels up a hill 250 m long and 18.0 m high. Starting with a speed of $50.\frac{km}{h}$ and ending with a speed of $70.\frac{km}{h}$. The force of friction on the car is 550 N.
 - a.) How much potential energy does the car have at the bottom of the hill?
 - b.) What is the car's kinetic energy at the bottom of the hill?
 - c.) What is the car's total energy at the bottom of the hill?
 - d.) What is the potential energy of the car at the top of the hill?
 - e.) How much does the car's total energy increase as it climbs the hill?
 - f.) How much chemical energy does the car use?
- 5.) What is the mass of an object travelling at $20.\frac{m}{s}$ with a kinetic energy of 4000.J?
- 6.) How much time is required to raise the temperature of $1.50 \ kg$ of water ($c = 4180 \frac{J}{kg}$ °C) from 10.0°C to 90.0°C, using $1.50 \times 10^3 W$ electric kettle that is 75.0% efficient?

- 7.) What is the final temperature of a 2.0 kg block of copper ($c = 430 \frac{J}{kg}$ °C) if it's original temperature was 23°C, and it absorbs 50 000. J of heat energy?
- 8.) If it takes $2.4 \times 10^5 J$ to raise the temperature of a 6.0 kg mass up 15°C, what is it's specific heat capacity?

9.) A 15 g bullet travelling at $400.\frac{m}{s}$ hits a block of wood and penetrates it a distance of 20.cm before stopping. How much work is done in stopping the bullet?

10.) How much work must be done to stop a 1000. kg car travelling $100.\frac{km}{h}$?

- 11.) Tarzan is running at a top speed of $8.0 \frac{m}{s}$ and grabs a vine hanging vertically from a tall tree in the jungle. How high can he swing upwards? Does the length of the vine affect your answer?
- 12.) A flea should be able to jump to a height of 5.0 cm, but because of air resistance it only reaches 3.5 cm. What fraction of its energy is lost to air resistance?
- 13.) A 0.25 kg pine cone falls from a branch 20.m above the ground.
 - a.) With what speed would it hit the ground if air resistance could be ignored?
 - b.) If it actually hits the ground with a speed of $9.0\frac{m}{s}$, what was the average force of air resistance on it?

<u>Answers</u> - 1a.) $1.2 \times 10^5 J$	b.) $3.9 \times 10^4 J$	c.) $3.9 \times 10^4 J$	d.) $8.1 \times 10^4 J$	e .) 12 $\frac{m}{s}$	f .) 8.1 × 10 ⁴ J	g .) <i>d</i> = 52 <i>m</i>	
2a.) 585 000 J	b.) 85.8%	3.) 21 <i>J</i>	4a.) zero b.) 1.2 ×	10 ⁵ J	c.) 1.2 × 10 ⁵ <i>J</i>	d.) $2.2 \times 10^{5} J$	
e.) 3.36×10^{5} J	f.) 4.74 × 10	⁵ J 5.) 20. kg	6.) 7 min 26 <i>s</i>	7.) 81℃	8.) $2.7 \times 10^3 \frac{J}{kg}$ °C	9 .) 1200 <i>J</i>	
10.) 3.86 × 10 ⁵ J	11.) <i>h</i> = 3.3 <i>n</i>	11.) $h = 3.3 m$ No, the vine length has no impact on height.					
12.) 30.%	13a.) −20. ^m / _s	b.) +2.0	N				