Practice - Selecting Preferred Reactions

1. A sample of copper is placed in $HNO_{3(aq)}$ and another sample of copper is placed in $HCl_{(aq)}$.

a. In which acid does a spontaneous redox reaction occur with the copper? ______

b. Calculate the E° for the reaction that occurs.

2. In a fuel cell, the following spontaneous redox reaction occurs in a basic solution: $2H_{2(q)} + O_{2(q)} \rightarrow 2 H_2O_{(l)}$ (basic)

a. Write the balanced half reaction that occurs at the anode:

b. Write the balanced half reaction that occurs at the cathode:

- c. Determine the E° for the fuel cell.
- 3. What happens to iron as it corrodes?
 - A. It loses electrons and is reduced.
 - B. It gains electrons and is reduced.
- C. It loses electrons and is oxidized.
- D. It gains electrons and is oxidized.
- 4. Why is aluminum a good choice for the manufacture of outdoor structures?
 - A. Pure aluminium is easily reduced.
 - B. Pure aluminium is not easily oxidized.
 - C. Pure aluminium is easily reduced, but forms a protective coating.
 - D. Pure aluminium is easily oxidized, but forms a protective coating.
- 5. Why is gold a good choice for the manufacture of jewelry?
 - A. Pure gold is not easily reduced.
 - B. Pure gold is not easily oxidized.
 - C. Pure gold is easily reduced, but forms a protective coating.
 - D. Pure gold is easily oxidized, but forms a protective coating.
- 6. A sample of Zn corrodes in moist air.
 - a. Write the reduction half-reaction.

b. What metal could be attached to the sample to prevent the corrosion of the zinc? Explain.

7. Consider the following diagrams:

	Beaker A	Beaker B			
Fe - C	Salt Water	Salt Water	Fe wrapped in a strip of Zn		
a. Predict	what should happen	to the Fe in Beaker	Α.		
Prediction	:			_	
Explanatio	n:				
b. Predict	what should happer	1 to the Fe in Beaker	В.		
Prediction	:			_	
Explanatio	n:				
	-	nhibit the corrosion conditions		D. increasing the	e temperature
A. TI	he tin is a sacrificio	Il anode	ited by a tin coating? C. The tin is a weak D. The tin keeps th	ker reducing agen	
works.		ferent methods of p	preventing the corros	ion of iron. Expla	in how each method
Explanatio					
Method # Explanatio					
11. Which of A. ti	-	ls could be used to c C. zinc	athodically protect ir D. copper	ron?	
12. Which o A.go	-	als could be used to C. aluminium	cathodically protect i D. cobalt	iron?	