Redox Titrations

- 1. Which of the following could be used to determine the $[Fe^{+2}]$ by a redox reaction?
 - A. I_2 B. Cl^- C. Cu^{2+} <u>D.</u> MnO_4^- (acidified)
- 2. Which of the following could be used to determine the acidified [BrO₃⁻] by a redox reaction?
 - A. NO_3^- (acidified) <u>B.</u> I⁻ C. Cu²⁺ D. MnO₄⁻ (acidified)
- 3. Which of the following could be titrated using acidified MnO4⁻ ions?
 - A. Na⁺ B. IO_3^- C. SO_4^{2-} D. H_2O_2
- 4. The titration of a 25.0 mL SnCl₂ sample, in acidic solution, requires 14.4 mL of 0.030 M K₂Cr₂O₇. The balanced equation for the reaction is shown below:

$$Cr_2O_7^{2-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$$

What is the number of moles of SnCl₂ in the original sample?

A. $1.4 \times 10^{-4} mol$ B. $4.3 \times 10^{-4} mol$ C. $1.3 \times 10^{-4} mol$ D. $5.2 \times 10^{-2} mol$

5. A 10.0 mL water sample was analyzed for [Fe⁺²] using a redox titration with acidified KMnO₄. The equation for the reaction is: $MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

A 10.0 mL sample was titrated with 12.5 mL of 0.10 M KMnO₄ solution. What is the [Fe⁺²] in the water sample?

- A. 0.025 M B. 0.13 M C. 0.28 M D. 0.63 M
- 6. Acidified potassium permanganate (KMnO₄) solution is often used in redox titrations. Permanganate reacts with Sn⁺² as follows: $2MnO_4^- + 5Sn^{2*} + 16H^* \rightarrow 2Mn^{2*} + 5Sn^{4*} + 8H_2O$

A 10.0 mL solution containing Sn^{+2} is titrated with 19.3 mL of 0.10 M KMnO₄. What is the [Sn^{+2}]?

Answer - 0.0193
$$L \times \frac{0.10 \text{ mol } MnO_4^-}{1 L MnO_4^-} \times \frac{5 \text{ mol } Sn^{+2}}{2 \text{ mol } MnO_4^-} \times \frac{1}{0.010 L Sn^{+2}} = 0.4825 M$$
 [Sn⁺²] = 0.48M

7. In the process of extracting tin from a sample of ore, the tin is removed as Sn^{2+} ions. A titration requires 21.43 mL of 0.0170 M K₂Cr₂O₇ to reach the equivalence point with the Sn^{2+} in a 0.750 g sample of the ore. $3Sn^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$

Using the reaction above, calculate the percent mass of tin in the ore sample.

<u>Answer</u> - 0.02143 $L \times \frac{0.0170 \ mol \ Cr_2 O_7}{1 \ L \ Cr_2 O_7} \times \frac{3 \ mol \ Sn^{+2}}{1 \ mol \ Cr_2 O_7} \times \frac{118.71 \ g \ Sn^{+2}}{1 \ mol \ Sn^{+2}} = 0.12974 \ g \ Sn^{+2} = \frac{0.12974 \ g \ Sn^{+2}}{0.750 \ g} \times 100$ $Sn^{+2} = 17.29889\%$ <u>Sn^{+2} = 17.3\%</u> 8. Consider the following redox reaction in acidic solution:

$$\frac{2}{2}$$
 KMnO₄ + $\frac{5}{2}$ H₂O₂ + $\frac{3}{2}$ H₂SO₄ → K₂SO₄ + $\frac{2}{2}$ MnSO₄ + $\frac{8}{2}$ H₂O + $\frac{5}{2}$ O₂

- a. Balance the above redox reaction.
- b. The above reaction was used for a redox titration. At the equivilence point $5.684 \times 10^{-4} mol \text{ KMnO}_4$ was required to titrate 5.00 mL of H₂O₂ solution. Calculate [H₂O₂].

<u>Answer</u> - 5.684 × 10⁻⁴ × $\frac{5 \mod H_2 O_2}{2 \mod M n O_4}$ × $\frac{1}{0.00500 \ L H_2 O_2}$ = 0.2842 M [H₂O₂] = 0.284 M

- 9. A titration is performed to determine the $[Fe^{+2}]$ in 25.00 mL of an FeSO₄ solution. It requires 22.52 mL of 0.015 M KMnO₄ to reach the equivilence point in which Mn⁺² and Fe⁺³ are produced.
 - a. balance the redox reaction: $\underline{8} \text{ H}^{+} + \text{MnO}_4^{-} + \underline{5} \text{ Fe}^{2+} \rightarrow \text{Mn}^{2+} + \underline{5} \text{ Fe}^{3+} + \underline{4} \text{ H}_2O$
 - b. Calculate the $[Fe^{+2}]$

<u>Answer</u> - $0.02252 L \times \frac{0.15 \text{ mol } MnO_4^-}{1 L MnO_4} \times \frac{5 \text{ mol } Fe^{+2}}{1 \text{ mol } MnO_4^-} \times \frac{1}{0.02500 L Fe^{+2}} = 0.675 M$ [Fe⁺²] = 0.68 M