Redox Titrations

1. Which of the following could be used to determine the [Fe⁺²] by a redox reaction? B. Cl-C Cu^{2+} A. I2 D. MnO₄ (acidified) 2. Which of the following could be used to determine the acidified [BrO₃-] by a redox reaction? A. NO₃ (acidified) C. Cu2+ D. MnO₄ (acidified) B. I-3. Which of the following could be titrated using acidified MnO₄ ions? C. 50₄²-B. IO₃-D. H₂O₂ A. Na⁺ 4. The titration of a 25.0 mL SnCl₂ sample, in acidic solution, requires 14.4 mL of 0.030 M K₂Cr₂O₇. The balanced equation for the reaction is shown below: $Cr_2O_7^{2-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O_7^{2-}$ What is the number of moles of SnCl₂ in the original sample? $C. 1.3 \times 10^{-4} \ mol$ **A.** $1.4 \times 10^{-4} \ mol$ B. $4.3 \times 10^{-4} \ mol$ D. $5.2 \times 10^{-2} \ mol$ 5. A $10.0 \, mL$ water sample was analyzed for [Fe⁺²] using a redox titration with acidified KMnO₄. The $MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ equation for the reaction is: A $10.0 \, mL$ sample was titrated with $12.5 \, mL$ of $0.10 \, M$ KMnO₄ solution. What is the [Fe⁺²] in the water sample? **A**. 0.025 M **B**. 0.13 *M* **C**. 0.28 M D. 0.63 M Please do the following on a separate piece of paper. 6. Acidified potassium permanganate (KMnO₄) solution is often used in redox titrations. Permanganate reacts $2MnO_4^- + 5Sn^{2+} + 16H^+ \rightarrow 2Mn^{2+} + 5Sn^{4+} + 8H_2O$ with Sn+2 as follows: A 10.0 mL solution containing Sn^{+2} is titrated with 19.3 mL of 0.10 M KMnO₄. What is the [Sn^{+2}]? 7. In the process of extracting tin from a sample of ore, the tin is removed as Sn^{2+} ions. A titration requires 21.43 mL of 0.0170 M K₂Cr₂O₇ to reach the equivalence point with the Sn^{2+} in a 0.750 g sample of the ore.

 $3\text{Sn}^{2+} + Cr_2O_7^{2-} + 14\text{H}^+ \rightarrow 3\text{Sn}^{4+} + 2Cr^{3+} + 7\text{H}_2O$

Using the reaction above, calculate the percent mass of tin in the ore sample.

8. Consider the following redox reaction in acidic solution:

$$KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + H_2O + O_2$$

- a. Balance the above redox reaction.
- b. The above reaction was used for a redox titration. At the equivilence point $5.684 \times 10^{-4} \ mol \ KMnO_4$ was required to titrate $5.00 \ mL$ of H_2O_2 solution. Calculate $[H_2O_2]$.
- 9. A titration is performed to determine the $[Fe^{+2}]$ in 25.00~mL of an FeSO₄ solution. It requires 22.52~mL of 0.015~M KMnO₄ to reach the equivilence point in which Mn⁺² and Fe⁺³ are produced.
 - a. balance the redox reaction: $MnO_4^- + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}$ (acidic)
 - b. Calculate the [Fe⁺²]