Redox Titrations

1. Which of the following could be used to determine the $\left[\mathrm{Fe}^{+2}\right]$ by a redox reaction?
A. I_{2}
B. Cl^{-}
C. Cu^{2+}
D. MnO_{4}^{-}(acidified)
2. Which of the following could be used to determine the acidified $\left[\mathrm{BrO}_{3}{ }^{-}\right]$by a redox reaction?
A. $\mathrm{NO}_{3}{ }^{-}$(acidified)
B. I^{-}
C. Cu^{2+}
D. $\mathrm{MnO}_{4}{ }^{-}$(acidified)
3. Which of the following could be titrated using acidified MnO_{4}^{-}ions?
A. Na^{+}
B. $\mathrm{IO}_{3}{ }^{-}$
C. $\mathrm{SO}_{4}{ }^{2-}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}$
4. The titration of a 25.0 mL SnCl 2 sample, in acidic solution, requires 14.4 mL of $0.030 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. The balanced equation for the reaction is shown below:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Sn}^{2+} \rightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

What is the number of moles of SnCl_{2} in the original sample?
A. $1.4 \times 10^{-4} \mathrm{~mol}$
B. $4.3 \times 10^{-4} \mathrm{~mol}$
C. $1.3 \times 10^{-4} \mathrm{~mol}$
D. $5.2 \times 10^{-2} \mathrm{~mol}$
5. A 10.0 mL water sample was analyzed for $\left[\mathrm{Fe}^{+2}\right]$ using a redox titration with acidified KMnO_{4}. The

$$
\text { equation for the reaction is: } \quad \mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

A 10.0 mL sample was titrated with 12.5 mL of $0.10 \mathrm{M} \mathrm{KMnO}_{4}$ solution. What is the $\left[\mathrm{Fe}^{+2}\right]$ in the water sample?
A. 0.025 M
B. 0.13 M
C. 0.28 M
D. 0.63 M

Please do the following on a separate piece of paper.

6. Acidified potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ solution is often used in redox titrations. Permanganate reacts with Sn^{+2} as follows: $\quad 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}+8 \mathrm{H}_{2} \mathrm{O}$

A 10.0 mL solution containing Sn^{+2} is titrated with 19.3 mL of $0.10 \mathrm{M} \mathrm{KMnO}_{4}$. What is the $\left[\mathrm{Sn}^{+2}\right]$?
7. In the process of extracting tin from a sample of ore, the tin is removed as Sn^{2+} ions. A titration requires 21.43 mL of $0.0170 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to reach the equivalence point with the Sn^{2+} in a 0.750 g sample of the ore.

$$
3 \mathrm{Sn}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

Using the reaction above, calculate the percent mass of tin in the ore sample.
8. Consider the following redox reaction in acidic solution:

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

a. Balance the above redox reaction.
b. The above reaction was used for a redox titration. At the equivilence point $5.684 \times 10^{-4} \mathrm{~mol} \mathrm{KMnO}_{4}$ was required to titrate 5.00 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution. Calculate $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$].
9. A titration is performed to determine the $\left[\mathrm{Fe}^{+2}\right]$ in 25.00 mL of an FeSO_{4} solution. It requires 22.52 mL of $0.015 \mathrm{M} \mathrm{KMnO}_{4}$ to reach the equivilence point in which Mn^{+2} and Fe^{+3} are produced.
a. balance the redox reaction: $\quad \mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$ (acidic)
b. Calculate the $\left[\mathrm{Fe}^{+2}\right]$

