Worksheet - Periodic Trends Practice

- What is the difference between electronegativity and ionization energy?
 <u>Answer</u> ionization energy is the energy required to remove an electron whereas electronegativity is the affinity of an atom to a neighbouring atoms electrons.
- 2.) Why does fluorine have a higher ionization energy than iodine? <u>Answer</u> - fluorine has a higher ionization energy than iodine as it has less electrons causing less energy levels. The lesser energy levels allow fluorine to be a smaller atom. Smaller atoms hold their electrons in closer and thus with a greater attractive force. This increases the energy needed to remove one of these electrons (ionization energy).
- 3.) Why do elements in the same family generally have similar properties?
 <u>Answer</u> the similar properties amongst family members is due to the similar electron configuration with the valence electrons being the same but occurring at different energy levels.
- 4.) Which is the largest atom in Group 14?

 <u>Answer</u> the largest atom would be Flerovium (man-made) or Lead (non-man made) elements.
- 5.) Which is the smallest atom in Group 17?

 <u>Answer</u> Fluorine is the smallest.
- 6.) Which is the smallest atom in period 5?<u>Answer</u> Xenon would be the smallest.
- 7.) Rank the following elements by increasing atomic radius: carbon, aluminium, oxygen, potassium.

 <u>Answer</u> Oxygen < Carbon < Aluminium < Potassium
- 8.) Rank the following elements by increasing electronegativity: sulphur, oxygen, neon, aluminium.

 <u>Answer</u> Aluminium < Sulphur < Oxygen < Neon
- 9.) Arrange the following atoms in order of decreasing atomic radius. Na Al P Cl Mg

 Answer Na > Mg > Al > P > Cl
- 10.) For each of the following pairs, circle the element that is larger?

 a.) N⁻³ or F⁻¹

 b.) Mg⁺² or Ca⁺²

 c.) Fe⁺² or Fe⁺³

 11.) Circle the element in each pair has the larger radius?

 a.) Mg or Mg⁺²

 b.) O or Q⁻²

 c.) K⁺ or Cl⁻

 d.) P⁻³ or S⁻²
- 12.) In each of the following pairs, circle the species with the higher first ionization energy:

 a.) Li or Cs (b.) Cl or Ar (c.) Ca or Br (d.) Na or Ne (e.) B or Be
- 13.) In each of the following pairs, circle the species with the larger atomic radius: a.) Mg or Ba (b.) S or 5^{-2} (c.) Cu^{+2} or Cu (d.) He or H (e.) Na or Cl

- 14.) Circle the best choice in each list:
 - a.) highest first ionization energy: C, N, Si
 - b.) highest electronegativity: As, Sn, S
 - c.) largest radius: S⁻², Cl⁻, Cl
- 15.) Order the following groups from largest to smallest radii.
 - a.) Ar, Cl⁻, K, S⁻²
- K, 5⁻², Cl⁻, Ar
- b.) C, Al, F, Si
- Al, Si, C, F

- c.) Na, Mg, Ar, P
- Na, Mg, P, Ar
- d.) I^{-1} , Ba^{+2} , Cs^{+1} , F^{-1} Cs^{+1} , Ba^{+2} , I^{-} , F^{-1}
- 16.) For each of the following sets of atoms, rank the atoms from smallest to largest atomic radius.
 - a.) Li, C, F
- F < C < Li
- b.) Li, Na, K
- Li < Na < K
- c.) Ge, P, O
- O < P < Ge

- d.) C. N. Al
- N < C < Al

- e.) Al, Cl, Ga
- CI < AI < Ga
- 17.) For each of the following sets of ions, rank them from smallest to largest ionic radius.

 - a.) Mq^{+2} , Si^{-4} , S^{-2} Mq^{+2} $< S^{-2}$ $< Si^{-4}$ b.) Ca^{+2} , Ba^{+2} , Mq^{+2} Mq^{+2} $< Ca^{+2}$ $< Ba^{+2}$ c.) Br^{-1} , Cl^{-1} , F^{-1} F^{-1} $< Cl^{-1}$ $< Br^{-1}$

- d.) Ba^{+2} , Cu^{+2} , Zn^{+1} $Cu^{+2} < Zn^{+1} < Ba^{+2}$
- e.) Si⁻⁴, P⁻³, O⁻² O⁻² · P⁻³ · Si⁻⁴
- 18.) For each of the following sets of atoms, rank them from lowest to highest ionization energy.
 - a.) Mg, S, Si Mq < Si < S
- b.) Ba, Ca, Mg
- Ba < Ca < Mg
- c.) Br, Cl, F

Si < P < He

Br < Cl < F

- d.) Ba, Cu, Ne Ba < Cu < Ne
- e.) He, P, Si
- 19.) For each of the following sets of atoms, rank them from lowest to highest electronegativity.
 - a.) C, Li, N Li < C < N

- b.) C, Ne, O
- Ne < C < O
- c.) O, P, Si
- Si < P < O

d.) K, Mg, P K< Mg < P e.) S, F, He He < S < F