Oxidation Numbers and Spontaneity

1.) In the following reactions, indicate which species are being oxidized and reduced, as well as label the oxidizing agent and the reducing agent.

a.)
$$Zn^{+2} + 2Li \rightarrow Zn + 2Li^{+}$$

c.)
$$H_2 + Sn^{+4} \rightarrow 2 H^+ + Sn^{+2}$$

Li oxidized and reducer, Zn⁺² reduced and oxidizer

H₂ oxidized and reducer, Sn⁺² reduced and oxidizer

b.)
$$2 \text{Li} + \text{F}_2 \rightarrow 2 \text{Li}^+ + 2 \text{F}^-$$

d.) 2 Fe⁺² + Sn⁺⁴
$$\rightarrow$$
 Sn⁺² + 2 Fe⁺³

Li oxidized and reducer, F2 reduced and oxidizer oxidizer

Fe⁺² oxidized and reducer, Sn⁺² reduced and

2.) Calculate the oxidation number for **bold type** atom.

+3

b.)
$$Cr_2O_7^{-2}$$
 +6

f.)
$$N_2O_3$$
 +3

g.)
$$C_3H_8 + \frac{8}{3}$$

d.)
$$N_2H_5^+$$
 -2

h.)
$$C_2O_4^{-2}$$
 +3

3.) Determine the oxidation number for the bold species for each reaction, and determine which species is being oxidized.

a.)
$$CIO_2 + C \rightarrow CIO_2 + CO_3^{-2}$$

c.)
$$MnO_4^- + C_2O_4^{-2} \rightarrow MnO_2 + CO_2$$

0 +3 +4 carbon ox

+3 +4 +4 carbon ox

b.)
$$Sn^{+2} + Cl^{-} + BrO_{3}^{-} \rightarrow SnCl_{6}^{-2} + Br^{-}$$

d.)
$$NO_3^- + H_2Te \rightarrow NO + TeO_4^{-2}$$

+2

+5 +4 -1 tin ox

+5 -2 +2 +6 tellurium ox

- 4a.) Which of Cl_2 , ClO_4^- , Cl^- , ClO_3^- , or Cl_2O is the product when ClO_2^- is reduced?
- Cl₂, Cl⁻, Cl₂O
- b.) Which of NO_3^- , N_2 , NO_2^- , N_2O_3 , or N_2O_3 can be produced by the oxidation of NO_3^-
- NO_3^- , NO_2^- , N_2O_3

5.) Which of the below chemicals can be oxidized, reduced, both or neither.

a.) Se
$$(s)$$
 neither (needs H^+)

g.)
$$Cr_2O_7^{-2}$$
 (acidic) reduced

- 6.) Predict whether the following reactions will occur or not and write out the reaction if it occurs.
 - a.) Zn+2 and Li (s)
- b.) Aq (s) and I
- c.) Sn^{+4} and $Au_{(s)}$ d.) Sn^{+2} and $Co_{(s)}$
- e.) Al+3 and Ni (s)

- a.) $Zn^{+2} + Li_{(s)} \rightarrow Zn + Li^{+} b.$) No. c.) No.
- d.) $Sn^{+2} + Co_{(s)} \rightarrow Sn + Co^{+2}$ e.) No.
- 7.) Which of the reactants below will react, and if they will write the products.
 - a.) $Zn_{(s)} + H_{2(q)}$

b.) Mn (s) + H⁺

No, both want to be oxidized.

 $2 H^{+} + Mn_{(s)} \rightarrow H_{2} + Mn^{+2}$

c.) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)

d.) MnO_{2 (s)} and $H^+ + I^-$

$$6 \; Fe^{+2} + Cr_2O_7^{-2} + 14 \; H^+ \; \rightarrow 6 \; Fe^{+3} + 2 \; Cr^{+3} + 7 \; H_2O \qquad MnO_2 + 4 \; H^+ + 2 \; I^- \; \rightarrow Mn^{+2} + I_2 + 2 \; H_2O$$

$$MnO_2 + 4 H^+ + 2 I^- \rightarrow Mn^{+2} + I_2 + 2 H_2O$$

- 8a.) Which of the following will act as an oxidizer when mixed with Co? Cr, I_2 , Al, and Fe^{+3} I_2 , Fe^{+3}
 - b.) Which of the following will act as a reducer when mixed with Ag⁺? H₂, Cl₂, Hg⁺², and H₂O₂ H_2, H_2O_2
 - c.) Which substance(s) can be oxidized by I_2 but not by acidic SO_4^{-2} ? Cu, S, and H₂SO₃
 - d.) Which substance(s) can be reduced by I^- but not by Fe^{+2} ?

 MnO₄- O₂ (acidified), and Fe^{+3}
- 9.) If an electrochemical cell is made by joining the two half reactions of $1 M Sn(NO_3)_2$ with a tin electrode and 1 M Fe(NO₃)₂ with an iron electrode. Over time what happens to the Sn⁺² and the Fe⁺²?

Answer - Sn2+ decreases (deposited on cathode as Sn), while Fe+2 increases (Fe dissolves into solution as Fe⁺²)

10.) Using the information given on the following four half-reactions, and knowing that F^{+2} reacts with D (s), E (s), and $G_{(s)}$, no reaction occurs between D^{+2} and any of the metals, and G^{+2} only reacts with $D_{(s)}$, arrange the four half-reactions in decreasing strength as oxidizing agents.

$$D^{+2} + 2 e^{-} \leftrightarrow D (s)$$
 weakest (4)
 $E^{+2} + 2 e^{-} \leftrightarrow E (s)$ second (2)
 $F^{+2} + 2 e^{-} \leftrightarrow F (s)$ strongest (1)
 $G^{+2} + 2 e^{-} \leftrightarrow G (s)$ third (3)

- $F^{+2} + 2e^{-} \leftrightarrow F_{(s)}$

- $D^{+2} + 2e^{-} \leftrightarrow D_{(s)}$