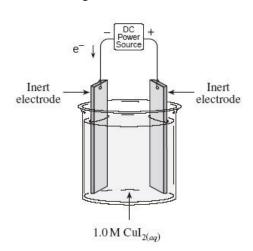
Practice - Electrolysis

- 1. Consider the following:
 - I. Electrolysis of water
- II. Electroplating of copper
- III. Fuel cell

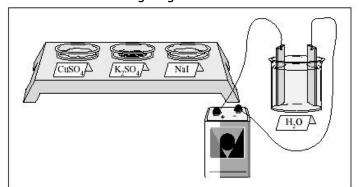
Which of the above involve non-spontaneous redox reactions?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 2. Which of the following best describes a car battery as it is being charged?
 - A. It is an electrolytic cell
 - B. It is an electrochemical cell
 - C. It is an example of a short circuit
 - D. It is a system moving to a state of lower potential energy
- 3. Which of the following describes an operating electrolytic cell?


E°	Type of reaction	<u>Direction of Electron Flow</u>
A. positive	spontaneous	from anode; to cathode
B. negative	non-spontaneous	from cathode; to anode
C. positive	spontaneous	from cathode; to anode
D. negative	non-spontaneous	from anode; to cathode

4. Which of the following describes an operating electrochemical cell?

E°	Type of reaction	<u>Direction of Electron Flow</u>
A. positive	spontaneous	anode to cathode
B. negative	spontaneous	cathode to anode
C. positive	non-spontaneous	anode to cathode
D. negative	non-spontaneous	cathode to anode


- 5. Which of the following best describes the term electrolysis?
 - A. a process that uses electrical energy to cause a spontaneous reaction
 - B. a process that generates electrical energy using a spontaneous reaction
 - C. a process that uses electrical energy to cause a non-spontaneous reaction
 - D. a process that generates electrical energy using a non-spontaneous reaction
- 6. Which of the following aqueous solution should not be used as an electrolyte in an electrolytic cell?
 - A. 1.0 M KOH
- B. 1.0 M H₂SO₄
- C. 1.0 M CuSO₄
- D. 1.0 M C₆H₁₂O₆

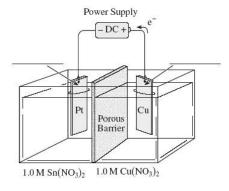
7. a. On the diagram below, label anode and cathode.

- b. Write out the half-reaction that occurs at the anode
- c. Write out the half-reaction that occurs at the cathode.
- d. Calculate the E°_{cell} .

8. Consider the following diagram:

Students are asked to produce hydrogen and oxygen gas by the electrolysis of water. They are given three substances (CuSO₄, K₂SO₄ and NaI) to choose from to prepare an electrolytic solution that will only produce hydrogen and oxygen gases.

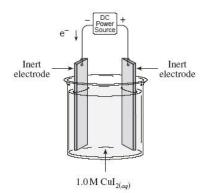
Explain why. Substance ______


a. Which substance should be selected.

b. Write the equation for the half-reaction that occurs at the anode in this electrolytic cell.

c. Explain why it would not be acceptable to use a copper anode in this cell.

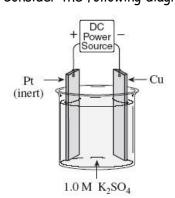
9. Sodium metal is produced commercially by the electrolysis of molten NaCl $_{(l)}$. Explain why sodium metal Na $_{(s)}$ cannot be produced by electrolysis of aqueous NaCl $_{(aq)}$.


10. Consider the following electrolytic cell which contains a porous barrier to prevent general mixing of solutions.

- a. Label the anode and cathode in the space provided on the diagram.
- b. Write an equation for the overall cell reaction.

c. Calculate the minimum theoretical voltage required for this reaction under standard conditions.

11. Consider the following cell:

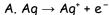


What happens to the $[I^-]$ and the pH in the operating cell?

[<u>I</u> -]	<u>pH</u>

A. increases decreases B. decreases stays constant C. stays constant increases D. stays constant

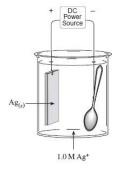
12. Consider the following diagram:



Which of the following best describes the mass of the copper electrode and the direction of the cation movement as the cell operates?

decreases

Mass of copper electrode	Cation movement
A. increases	to the left
B. stays the same	to the left
C. stays the same	to the right
D. decreases	to the right


- 13. The products of the electrolysis of molten MgCl₂ using inert electrodes are
 - A. hydrogen and oxygen
- C. magnesium and oxygen
- B. hydrogen and chlorine
- D. magnesium and chlorine
- 14. When $1.0 M \text{ Na}_2\text{SO}_4$ is electrolyzed, the solution near the anode becomes
 - A. basic and bubbles form
- C. basic and no bubbles form
- B. acidic and bubbles form
- D. acidic and no bubbles form
- 15. Which of the following is formed at the anode during the electrolysis of $1.0\,M$ KF?
- B. F₂
- C. H₂
- D. O₂
- 16. What is the reaction at the anode?

B.
$$Ag^+ + e^- \rightarrow Ag$$

C.
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

D.
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

17. An aqueous solution of CuSO4 is electrolyzed using copper electrodes. Which of the following would correctly describe the changes in the mass of each electrode and the $[Cu^{2+}]$ in solution?

Mass of anode	Mass of cathode	[Cu ²⁺]
A. stays the same	increases	decreases
B. stays the same	stays the same	stays the same
C. decreases	increases	stays the same
D. decreases	stays the same	increases

18. Which of the following are produced at the anode and cathode in the electrolysis of aqueous potassium sulphate using carbon electrodes?

<u>Anode</u>	<u>Cathode</u>
A. potassium	oxygen
B. hydrogen	oxygen
C. oxygen	hydrogen
D. sulphur	potassium

19. The electrolysis of aqueous Rb_2SO_4 using carbon electrodes produces changes in the solution around the electrodes. How will the pH change around the anode and cathode?

<u>pH around the anode</u>	pH around the catho
A. increase	increase
B. decrease	decrease
C. increase	decrease
D. decrease	increase

- 20. The same amount of electricity (same number of moles of electrons) is used to carry out the electrolysis of $PdCl_{2(aq)}$ and $AgNO_{3(aq)}$ solutions in separate cells. The masses of Pd and Ag produced were measured and compared. Which of the following is true about the mass of Pd produced?
 - A. The mass of Pd produced is not related to the mass of Ag.
 - B. The mass of Pd produced is approximately half that of Ag.
 - C. The mass of Pd produced is approximately twice that of Ag.
 - D. The mass of Pd produced is approximately the same as that of Ag.
- 21. Which of the following are produced at the anode and cathode during the electrolysis of aqueous calcium iodide using carbon electrodes?

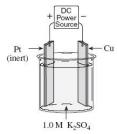
<u>Anode</u>	<u>Cathode</u>
A. iodine	calcium
B. hydrogen	oxygen
C. oxygen	hydrogen
D. iodine	hydrogen

22. Which of the following are produced at the anode and the cathode in the electrolysis of molten lithium chloride using platinum inert electrodes?

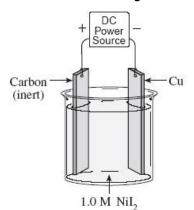
	J ,
<u>Anode</u>	<u>Cathode</u>
A. oxygen	hydrogen
B. hydrogen	oxygen
C. chlorine	lithium
D. lithium	chloride

- 23. What are the most likely products of the electrolysis of $1.0\,M$ MgI $_2$ using inert electrodes?
 - A. H_2 and I_2
- B. Mg and I2
- C. H₂ and O₂
- D. Mg and O2

24. Consider the following diagram:


What is the equation for the anode reaction?

A.
$$K \rightarrow K^{+} + e^{-}$$


B.
$$Cu \rightarrow Cu^{+2} + 2 e^{-}$$

C.
$$2 SO_4^{2-} \rightarrow S_2O_8^{-2} + 2 e^-$$

D.
$$H_2O \rightarrow \frac{1}{2}O_2 + 2 H^*(10^{-7} M) + 2 e^-$$

25. Consider the following:

What products would form at the anode and cathode as this cell operates?

<u>Anode</u>	<u>Cathode</u>
A. I ₂	Ni
B. Ni	I_2
C. O ₂	H_2
D. Cu ²⁺	Ni

26. A $1.0\,M$ HCl solution is electrolyzed using a copper anode and an inert carbon cathode. Predict the half reactions that will occur and describe what you would observe at each electrode.

Anode half reaction:	
Anode observation:	
Cathode half reaction:	
Cathode observation:	

- 27. A $1.0\,M$ solution of $CoSO_4$ is electrolyzed using inert electrodes.
 - a. Write the anode and cathode half-reactions that would occur.

Anode:
Cathode:
b. What is observed when bromthymol blue is added to the solution?
Colour of the bromthymol blue:Explanation: