Universal Gravitation and Gravitational Fields

Name - \qquad

Use Table 8-1 on page 159 for some of the questions below.
1.) What is the force of gravity on the following masses at the earth's surface, use Universal Gravitation.
a.) 75 kg .
b.) 500 g .
2.) The force of gravity on a mass is known to be 12000 N at earth's surface. What is the force of gravity at the following distances:
a.) 2.5 radii.
b.) 3 radii.
c.) 4 radii.
3.) Find the mass of a person who experiences a force of gravity of 281 N on the surface of Mars.
4.) What is the mass of the moon if a person on earth experiences a force of gravity of 735 N , the radius of the moon is $1.74 \times 10^{6} \mathrm{~m}$ and the force of gravity on the moon is 122 N .
5.) Show by calculation the gravitational field strength at:
a.) the earth's surface.
b.) five radii.
c.) the surface of the sun.
6.) A spaceship experiences a gravitational field toward the earth of $2.0 \frac{\mathrm{~N}}{\mathrm{~kg}^{\prime}}$, what would the same field strength be when the ship is half that distance from the earth?
7.) 1 pound is about 4.5 N , how much would a 10 kg cat weigh on Mars, Earth, and Jupiter?

Answers - 1.) $735 \mathrm{~N}, 4.9 \mathrm{~N}$
2.) $1920 \mathrm{~N}, 1333 \mathrm{~N}, 750 \mathrm{~N}$
3.) 75 kg
4.) $7.4 \times 10^{22} \mathrm{~kg}$
5.) $9.8 \frac{\mathrm{~N}}{\mathrm{~kg}^{\prime}}, 0.392 \frac{\mathrm{~N}}{\mathrm{~kg}}, 274 \frac{\mathrm{~N}}{\mathrm{~kg}}$
6.) $8 \frac{\mathrm{~N}}{\mathrm{~kg}}$
7.) $8.3 \mathrm{lbs}, 22 \mathrm{lbs}, 609 \mathrm{lbs}$

