Forces - More Practice

Section 1 - \vec{F}_{q}

- 1.) Calculate the force of gravity on a 25 kg mass at the surface of the earth.
- 2.) A 75 kg mass is on the surface of Mars when an astronaut lifts it with a spring scale. The scale has a reading of 259 N. What is the gravitational field strength on Mars?
- 3.) How much force must a horizontal surface exert to hold up a 2.0 kg book and what is the name of that force?

Section 2 - \vec{F}_{net}

- 1.) A cat is dragged at a constant velocity of $+3.0 \frac{m}{s}$ across sandpaper. What is the total force on the cat?
- 2.) A 1200 kg car is pushed by three students from rest to $+5.0\frac{m}{s}$, 30 m along a level surface. What was the unbalanced force used on the car?
- 3.) Assuming the force of friction on the car in problem 2 was 100 N how much combined force did the students have to exert?

4.) What is the acceleration of a 5.0 kg mass when pulled with 10 N [E] and 12 N [N]?

5.) What is the net force of a mass when pulled with a force of 10 N at $30^{\circ} S$ of W and 12 N at $40^{\circ} W$ of N.

Section 3 - \vec{F}_f and \vec{F}_n (level surfaces)

1.) A 10 kg mass is pulled along a level surface using a force of 25 N. What is the coefficient of friction?

2.) A force of 7.5 N is used to pull a rubber friction block across a table at constant speed. If the coefficient of friction is 0.35 what is the mass of the block?

3.) What shape is a graph of $ec{F}_f$ vs. $ec{F}_n$ and what is the slope?

Section 4 - \vec{F}_{ρ}

1.) Calculate the extension of a spring whose spring constant is $20 \frac{N}{m}$ when a 0.50 kg mass is hung on it.

2.) What is the spring constant of a desk if a force of 784 N compresses it from height 1.00 m to 0.92 m?

Section 5: Forces on Ramps

1.) What is the normal force and force down the ramp on a 5.0 kg mass resting on a 40° slope?

2.) What is the acceleration of a $3.0 \ kg$ mass on a 30° frictionless slope?

3.) What is the normal force on the mass in #2 above?

4.) What is the force of friction on the mass in #3 above if $\mu = 0.2$?

5.) What would be the acceleration of the mass in #4 above given $\mu = 0.2$?**

Answers

1.) -245 N	2.) $-3.45 N \times kg$	3.) +19.6 N , \vec{F}_n	1.) 0 N	2.) + 500 <i>N</i>	3.) +600 N	4.) $3.12 \frac{m}{s^2}$ at 50.	° N of E	5.) 16.9 N at 14o N of W
1.) 0.26	2.) 2.18 kg	3.) linear,μ	1.) 0.245 n	n 2.) 980	$0 \frac{N}{m}$			
1.) $\vec{F}_n = +37$.	$6 N \qquad \vec{F}_{down} = -31.5 N$	2.) -4.9	$\frac{m}{s^2}$	3.) +25.5 <i>N</i>	4.)) –5.1 <i>N</i>	5.) $-3.21\frac{n}{s}$	<u>n</u>